Patrick von Platen
commited on
Commit
·
bf4dfc2
1
Parent(s):
687eada
push
Browse files- config.json +25 -0
- create_config.py +4 -0
- tokenizer.json +0 -0
- train_tokenizer.py +24 -0
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.7.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 25165
|
25 |
+
}
|
create_config.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import RobertaConfig
|
2 |
+
|
3 |
+
config = RobertaConfig.from_pretrained("roberta-base", vocab_size=25165)
|
4 |
+
config.save_pretrained("./")
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train_tokenizer.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
|
3 |
+
|
4 |
+
# load dataset
|
5 |
+
dataset = load_dataset("mc4", "sw", split="train")
|
6 |
+
|
7 |
+
# Instantiate tokenizer
|
8 |
+
tokenizer = ByteLevelBPETokenizer()
|
9 |
+
|
10 |
+
def batch_iterator(batch_size=1000):
|
11 |
+
for i in range(0, len(dataset), batch_size):
|
12 |
+
yield dataset[i: i + batch_size]["text"]
|
13 |
+
|
14 |
+
# Customized training
|
15 |
+
tokenizer.train_from_iterator(batch_iterator(), vocab_size=25165, min_frequency=2, special_tokens=[
|
16 |
+
"<s>",
|
17 |
+
"<pad>",
|
18 |
+
"</s>",
|
19 |
+
"<unk>",
|
20 |
+
"<mask>",
|
21 |
+
])
|
22 |
+
|
23 |
+
# Save files to disk
|
24 |
+
tokenizer.save("tokenizer.json")
|