Fix some bugs
Browse files- src/run.sh +9 -8
- src/run_ed_recipe_nlg.py +2 -0
src/run.sh
CHANGED
@@ -3,24 +3,25 @@
|
|
3 |
export LC_ALL=C.UTF-8
|
4 |
export LANG=C.UTF-8
|
5 |
|
6 |
-
export OUTPUT_DIR
|
7 |
export MODEL_NAME_OR_PATH=t5-base
|
8 |
export NUM_BEAMS=3
|
9 |
|
10 |
-
export TRAIN_FILE=/
|
11 |
-
export VALIDATION_FILE=/
|
12 |
-
export TEST_FILE=/
|
13 |
export TEXT_COLUMN=inputs
|
14 |
export TARGET_COLUMN=targets
|
15 |
export MAX_SOURCE_LENGTH=256
|
16 |
export MAX_TARGET_LENGTH=1024
|
17 |
-
export SOURCE_PREFIX=
|
|
|
18 |
|
19 |
export PER_DEVICE_TRAIN_BATCH_SIZE=8
|
20 |
export PER_DEVICE_EVAL_BATCH_SIZE=8
|
21 |
export GRADIENT_ACCUMULATION_STEPS=2
|
22 |
export NUM_TRAIN_EPOCHS=5.0
|
23 |
-
export LEARNING_RATE=
|
24 |
export WARMUP_STEPS=5000
|
25 |
export LOGGING_STEPS=500
|
26 |
export EVAL_STEPS=2500
|
@@ -30,7 +31,7 @@ python run_ed_recipe_nlg.py \
|
|
30 |
--output_dir="$OUTPUT_DIR" \
|
31 |
--train_file="$TRAIN_FILE" \
|
32 |
--validation_file="$VALIDATION_FILE" \
|
33 |
-
--
|
34 |
--text_column="$TEXT_COLUMN" \
|
35 |
--target_column="$TARGET_COLUMN" \
|
36 |
--source_prefix="$SOURCE_PREFIX: " \
|
@@ -53,4 +54,4 @@ python run_ed_recipe_nlg.py \
|
|
53 |
--do_eval \
|
54 |
--overwrite_output_dir \
|
55 |
--predict_with_generate \
|
56 |
-
--push_to_hub
|
|
|
3 |
export LC_ALL=C.UTF-8
|
4 |
export LANG=C.UTF-8
|
5 |
|
6 |
+
export OUTPUT_DIR=./
|
7 |
export MODEL_NAME_OR_PATH=t5-base
|
8 |
export NUM_BEAMS=3
|
9 |
|
10 |
+
export TRAIN_FILE=/home/ubuntu/code/data/train.csv
|
11 |
+
export VALIDATION_FILE=/home/ubuntu/code/data/test.csv
|
12 |
+
export TEST_FILE=/home/ubuntu/code/data/test.csv
|
13 |
export TEXT_COLUMN=inputs
|
14 |
export TARGET_COLUMN=targets
|
15 |
export MAX_SOURCE_LENGTH=256
|
16 |
export MAX_TARGET_LENGTH=1024
|
17 |
+
export SOURCE_PREFIX=items
|
18 |
+
export MAX_EVAL_SAMPLES=5000
|
19 |
|
20 |
export PER_DEVICE_TRAIN_BATCH_SIZE=8
|
21 |
export PER_DEVICE_EVAL_BATCH_SIZE=8
|
22 |
export GRADIENT_ACCUMULATION_STEPS=2
|
23 |
export NUM_TRAIN_EPOCHS=5.0
|
24 |
+
export LEARNING_RATE=5e-4
|
25 |
export WARMUP_STEPS=5000
|
26 |
export LOGGING_STEPS=500
|
27 |
export EVAL_STEPS=2500
|
|
|
31 |
--output_dir="$OUTPUT_DIR" \
|
32 |
--train_file="$TRAIN_FILE" \
|
33 |
--validation_file="$VALIDATION_FILE" \
|
34 |
+
--max_eval_samples=$MAX_EVAL_SAMPLES \
|
35 |
--text_column="$TEXT_COLUMN" \
|
36 |
--target_column="$TARGET_COLUMN" \
|
37 |
--source_prefix="$SOURCE_PREFIX: " \
|
|
|
54 |
--do_eval \
|
55 |
--overwrite_output_dir \
|
56 |
--predict_with_generate \
|
57 |
+
--push_to_hub
|
src/run_ed_recipe_nlg.py
CHANGED
@@ -345,6 +345,7 @@ def main():
|
|
345 |
|
346 |
# Set the verbosity to info of the Transformers logger (on main process only):
|
347 |
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
348 |
|
349 |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
350 |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
@@ -374,6 +375,7 @@ def main():
|
|
374 |
data_files["test"] = data_args.test_file
|
375 |
extension = data_args.test_file.split(".")[-1]
|
376 |
|
|
|
377 |
dataset = load_dataset(
|
378 |
extension,
|
379 |
data_files=data_files,
|
|
|
345 |
|
346 |
# Set the verbosity to info of the Transformers logger (on main process only):
|
347 |
logger.info(f"Training/evaluation parameters {training_args}")
|
348 |
+
logger.info(f"List of TPUs {jax.devices()}")
|
349 |
|
350 |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
351 |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
|
375 |
data_files["test"] = data_args.test_file
|
376 |
extension = data_args.test_file.split(".")[-1]
|
377 |
|
378 |
+
print(data_files)
|
379 |
dataset = load_dataset(
|
380 |
extension,
|
381 |
data_files=data_files,
|