|
--- |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- argilla/distilabeled-Marcoro14-7B-slerp |
|
- mlabonne/NeuralMarcoro14-7B |
|
datasets: |
|
- mlabonne/chatml_dpo_pairs |
|
- argilla/distilabel-intel-orca-dpo-pairs |
|
base_model: |
|
- argilla/distilabeled-Marcoro14-7B-slerp |
|
- mlabonne/NeuralMarcoro14-7B |
|
--- |
|
|
|
# NeuDist-Ro-7B |
|
|
|
NeuDist-Ro-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) |
|
* [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) |
|
|
|
As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks |
|
|
|
In this case merging 2 DPOs of the same model |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: argilla/distilabeled-Marcoro14-7B-slerp |
|
layer_range: [0, 32] |
|
- model: mlabonne/NeuralMarcoro14-7B |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: mlabonne/NeuralMarcoro14-7B |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "flemmingmiguel/NeuDist-Ro-7B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |