NeuDist-Ro-7B / README.md
librarian-bot's picture
Librarian Bot: Add base_model metadata to model
eaaa857 verified
|
raw
history blame
2.01 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- argilla/distilabeled-Marcoro14-7B-slerp
- mlabonne/NeuralMarcoro14-7B
datasets:
- mlabonne/chatml_dpo_pairs
- argilla/distilabel-intel-orca-dpo-pairs
base_model:
- argilla/distilabeled-Marcoro14-7B-slerp
- mlabonne/NeuralMarcoro14-7B
---
# NeuDist-Ro-7B
NeuDist-Ro-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)
* [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)
As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks
In this case merging 2 DPOs of the same model
## 🧩 Configuration
```yaml
slices:
- sources:
- model: argilla/distilabeled-Marcoro14-7B-slerp
layer_range: [0, 32]
- model: mlabonne/NeuralMarcoro14-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/NeuralMarcoro14-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "flemmingmiguel/NeuDist-Ro-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```