File size: 6,202 Bytes
ad89d98 2845cc4 380887d 2845cc4 380887d 2845cc4 380887d 2845cc4 380887d 2845cc4 380887d 2845cc4 ad89d98 380887d ad89d98 380887d ad89d98 380887d ad89d98 380887d ad89d98 380887d ad89d98 380887d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import torch
from speechbrain.inference.interfaces import Pretrained
class AttentionMLP(torch.nn.Module):
def __init__(self, input_dim, hidden_dim):
super(AttentionMLP, self).__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(input_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, 1, bias=False),
)
def forward(self, x):
x = self.layers(x)
att_w = torch.nn.functional.softmax(x, dim=2)
return att_w
class Discrete_EmbeddingLayer(torch.nn.Module):
"""This class handles embedding layers for discrete tokens.
Arguments
---------
num_codebooks: int ,
number of codebooks of the tokenizer.
vocab_size : int,
size of the dictionary of embeddings
emb_dim: int ,
the size of each embedding vector
pad_index: int (default: 0),
If specified, the entries at padding_idx do not contribute to the gradient.
init: boolean (default: False):
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
freeze: boolean (default: False)
If True, the embedding is frozen. If False, the model will be trained
alongside with the rest of the pipeline.
Example
-------
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
>>> model_hub = "facebook/encodec_24khz"
>>> save_path = "savedir"
>>> model = Encodec(model_hub, save_path)
>>> audio = torch.randn(4, 1000)
>>> length = torch.tensor([1.0, .5, .75, 1.0])
>>> tokens, emb = model.encode(audio, length)
>>> print(tokens.shape)
torch.Size([4, 4, 2])
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
>>> in_emb = emb(tokens)
>>> print(in_emb.shape)
torch.Size([4, 4, 2, 1024])
"""
def __init__(
self,
num_codebooks,
vocab_size,
emb_dim,
pad_index=0,
init=False,
freeze=False,
available_layers=None,
layers=None,
):
super(Discrete_EmbeddingLayer, self).__init__()
self.vocab_size = vocab_size
self.num_codebooks = num_codebooks
self.freeze = freeze
self.embedding = torch.nn.Embedding(
num_codebooks * vocab_size, emb_dim
).requires_grad_(not self.freeze)
self.init = init
self.layers = layers
self.available_layers = available_layers
self.offsets = self.build_offsets()
def init_embedding(self, weights):
with torch.no_grad():
self.embedding.weight = torch.nn.Parameter(weights)
def build_offsets(self):
offsets = torch.arange(
0,
self.num_codebooks * self.vocab_size,
self.vocab_size,
)
if self.layers:
selected_layers = set(self.layers)
indexes = [idx for idx, layer in enumerate(self.layers) if layer in selected_layers]
offsets = offsets[indexes]
return offsets
def forward(self, in_tokens):
"""Computes the embedding for discrete tokens.
a sample.
Arguments
---------
in_tokens : torch.Tensor
A (Batch x Time x num_codebooks)
audio sample
Returns
-------
in_embs : torch.Tensor
"""
with torch.set_grad_enabled(not self.freeze):
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
in_tokens_offset = in_tokens + self.offsets.to(in_tokens.device)
# Forward Pass to embedding and
in_embs = self.embedding(in_tokens_offset.int())
return in_embs
class DiscreteSpkEmb(Pretrained):
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
language-id, emotion recognition, keyword spotting, etc).
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
are defined in the yaml file. If you want to
convert the predicted index into a corresponding text label, please
provide the path of the label_encoder in a variable called 'lab_encoder_file'
within the yaml.
The class can be used either to run only the encoder (encode_batch()) to
extract embeddings or to run a classification step (classify_batch()).
```
Example
-------
>>> import torchaudio
>>> from speechbrain.pretrained import EncoderClassifier
>>> # Model is downloaded from the speechbrain HuggingFace repo
>>> tmpdir = getfixture("tmpdir")
>>> classifier = EncoderClassifier.from_hparams(
... source="speechbrain/spkrec-ecapa-voxceleb",
... savedir=tmpdir,
... )
>>> # Compute embeddings
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
>>> embeddings = classifier.encode_batch(signal)
>>> # Classification
>>> prediction = classifier .classify_batch(signal)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def encode_batch(self, audio, length=None):
"""Encodes the input audio into a single vector embedding.
The waveforms should already be in the model's desired format.
Arguments
---------
audio : torch.tensor
Batch of tokenized audio [batch, time, heads]
length : torch.tensor
Lengths of the waveforms relative to the longest one in the
batch, tensor of shape [batch]. The longest one should have
relative length 1.0 and others len(waveform) / max_length.
Used for ignoring padding.
Returns
-------
torch.tensor
The encoded batch
"""
# Manage single waveforms in input
embeddings = self.mods.discrete_embedding_layer(audio)
att_w = self.mods.attention_mlp(embeddings)
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
embeddings = self.mods.embedding_model(feats, length)
return embeddings.squeeze(1)
def forward(self, audio, length=None):
return self.encode_batch(audio, length)
|