File size: 8,237 Bytes
4641f94
 
 
 
 
 
 
 
 
 
a7a4721
 
4641f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
'''
import warnings
warnings.filterwarnings("ignore")

from models.vit import VisionTransformer, interpolate_pos_embed
from models.med import BertConfig, BertModel, BertLMHeadModel
from transformers import BertTokenizer

import torch
from torch import nn
import torch.nn.functional as F

import os
from urllib.parse import urlparse
from timm.models.hub import download_cached_file

class BLIP_Decoder(nn.Module):
    def __init__(self,                 
                 med_config = 'configs/med_config.json',  
                 image_size = 384,
                 vit = 'base',
                 vit_grad_ckpt = False,
                 vit_ckpt_layer = 0,
                 prompt = 'a picture of ',
                 ):
        """
        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
        """            
        super().__init__()
        
        self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
        self.tokenizer = init_tokenizer()   
        med_config = BertConfig.from_json_file(med_config)
        med_config.encoder_width = vision_width
        self.text_decoder = BertLMHeadModel(config=med_config)    
        
        self.prompt = prompt
        self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1

        
    def forward(self, image, caption):
        
        image_embeds = self.visual_encoder(image) 
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
        
        text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) 
        
        text.input_ids[:,0] = self.tokenizer.bos_token_id
        
        decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)         
        decoder_targets[:,:self.prompt_length] = -100
     
        decoder_output = self.text_decoder(text.input_ids, 
                                           attention_mask = text.attention_mask, 
                                           encoder_hidden_states = image_embeds,
                                           encoder_attention_mask = image_atts,                  
                                           labels = decoder_targets,
                                           return_dict = True,   
                                          )   
        loss_lm = decoder_output.loss
        
        return loss_lm
        
    def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
        image_embeds = self.visual_encoder(image)

        if not sample:
            image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
            
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
        model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
        
        prompt = [self.prompt] * image.size(0)
        input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) 
        input_ids[:,0] = self.tokenizer.bos_token_id
        input_ids = input_ids[:, :-1] 

        if sample:
            #nucleus sampling
            outputs = self.text_decoder.generate(input_ids=input_ids,
                                                  max_length=max_length,
                                                  min_length=min_length,
                                                  do_sample=True,
                                                  top_p=top_p,
                                                  num_return_sequences=1,
                                                  eos_token_id=self.tokenizer.sep_token_id,
                                                  pad_token_id=self.tokenizer.pad_token_id, 
                                                  repetition_penalty=1.1,                                            
                                                  **model_kwargs)
        else:
            #beam search
            outputs = self.text_decoder.generate(input_ids=input_ids,
                                                  max_length=max_length,
                                                  min_length=min_length,
                                                  num_beams=num_beams,
                                                  eos_token_id=self.tokenizer.sep_token_id,
                                                  pad_token_id=self.tokenizer.pad_token_id,     
                                                  repetition_penalty=repetition_penalty,
                                                  **model_kwargs)            
            
        captions = []    
        for output in outputs:
            caption = self.tokenizer.decode(output, skip_special_tokens=True)    
            captions.append(caption[len(self.prompt):])
        return captions


def blip_decoder(pretrained='',**kwargs):
    model = BLIP_Decoder(**kwargs)
    if pretrained:
        model,msg = load_checkpoint(model,pretrained)
        assert(len(msg.missing_keys)==0)
    return model    

def init_tokenizer():
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    tokenizer.add_special_tokens({'bos_token':'[DEC]'})
    tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})       
    tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]  
    return tokenizer


def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
        
    assert vit in ['base', 'large'], "vit parameter must be base or large"
    if vit=='base':
        vision_width = 768
        visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, 
                                           num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
                                           drop_path_rate=0 or drop_path_rate
                                          )   
    elif vit=='large':
        vision_width = 1024
        visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, 
                                           num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
                                           drop_path_rate=0.1 or drop_path_rate
                                          )   
    return visual_encoder, vision_width

def is_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")

def load_checkpoint(model,url_or_filename):
    if is_url(url_or_filename):
        cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
        checkpoint = torch.load(cached_file, map_location='cpu') 
    elif os.path.isfile(url_or_filename):        
        checkpoint = torch.load(url_or_filename, map_location='cpu') 
    else:
        raise RuntimeError('checkpoint url or path is invalid')
        
    state_dict = checkpoint['model']
    
    state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) 
    if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
        state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
                                                                         model.visual_encoder_m)    
    for key in model.state_dict().keys():
        if key in state_dict.keys():
            if state_dict[key].shape!=model.state_dict()[key].shape:
                del state_dict[key]
    
    msg = model.load_state_dict(state_dict,strict=False)
    print('load checkpoint from %s'%url_or_filename)  
    return model,msg