File size: 15,469 Bytes
3c1955e bafc0de c3426b7 3c1955e 9b58bb3 c4844cd ce25f02 a112afa bafc0de 5596b7b c4844cd bab5c7c 9b58bb3 bafc0de 3c1955e 9aeabfb c4844cd bafc0de c4844cd ce25f02 a112afa bafc0de c4844cd bafc0de bab5c7c bafc0de bab5c7c 9b58bb3 bafc0de d7580f1 b3847d7 c4844cd b3847d7 ce25f02 a112afa c4844cd b3847d7 c4844cd b3847d7 c4844cd bafc0de b3847d7 3c1955e c4844cd 3c1955e 5596b7b ce25f02 a112afa c4844cd 5596b7b c4844cd bab5c7c 9b58bb3 bafc0de c4844cd ce25f02 a112afa c4844cd bab5c7c 9b58bb3 bafc0de bab5c7c c4844cd ce25f02 a112afa c4844cd bab5c7c c4844cd bab5c7c c4844cd bafc0de c4844cd ce25f02 a112afa c4844cd 9b58bb3 bafc0de ce25f02 a112afa bafc0de a112afa bafc0de a112afa bafc0de c411625 a112afa c411625 a112afa c411625 a112afa c411625 a112afa c411625 a112afa c411625 a112afa c411625 bab5c7c bafc0de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
[
{
"id": "Internal",
"model_title": "AI Assistant",
"model_file": "ggml-model-Q8_0.gguf",
"model_url": "https://",
"model_info_url": "https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B",
"model_avatar": "ava0",
"model_intention": "It's good for talking and casual writing.",
"model_license": "license_llama2.txt",
"model_license_info": "Meta Llama 2 Community License Agreement",
"model_license_url": "https://ai.meta.com/llama/license/",
"model_description": "It is an AI assistant who can talk with you and help solve simple problems. It's based on a lite LLAMA2 model developed by Meta Inc.",
"developer": "Meta",
"developer_url": "https://ai.meta.com/llama/",
"file_size": 1430,
"context" : 2048,
"temp" : 0.6,
"prompt_format" : "<human>: {{prompt}}\n<bot>: ",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "HumanBot",
"is_ready": true,
"is_internal": true,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "LiteLlama-460M-1T-Q8",
"model_title": "LiteLlama",
"model_file": "LiteLlama-460M-1T-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/ahxt/LiteLlama-460M-1T",
"model_avatar": "logo_litellama",
"model_intention": "This is a 460 parameters' very small model for test purpose only",
"model_license": "license_llama2.txt",
"model_license_info": "Meta Llama 2 Community License Agreement",
"model_license_url": "https://ai.meta.com/llama/license/",
"model_description": "It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.",
"developer": "Xiaotian Han from Texas A&M University",
"developer_url": "https://huggingface.co/ahxt/LiteLlama-460M-1T",
"file_size": 493,
"context" : 1024,
"temp" : 0.6,
"prompt_format" : "<human>: {{prompt}}\n<bot>:",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "TinyLlama",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "tinyllama-1.1B-chat-Q8",
"model_title": "TinyLlama-1.1B-chat",
"model_file": "tinyllama-1.1B-chat-v1.0-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"model_avatar": "logo_tinyllama",
"model_intention": "It's good for question & answer.",
"model_license": "license_llama2.txt",
"model_license_info": "Meta Llama 2 Community License Agreement",
"model_license_url": "https://ai.meta.com/llama/license/",
"model_description": "The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.",
"developer": "Zhang Peiyuan",
"developer_url": "https://github.com/jzhang38/TinyLlama",
"file_size": 1170,
"context" : 4096,
"temp" : 0.6,
"prompt_format" : "<|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "TinyLlama",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "mistral-7b-instruct-v0.2-Q8",
"model_title": "Mistral 7B v0.2",
"model_file": "mistral-7b-instruct-v0.2.Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
"model_avatar": "logo_mistralai",
"model_intention": "It's a 7B large model for Q&A purpose. But it requires a high-end device to run.",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.",
"developer": "Mistral AI",
"developer_url": "https://mistral.ai/",
"file_size": 7695,
"context" : 4096,
"temp" : 0.6,
"prompt_format" : "<s>[INST]{{prompt}}[/INST]</s>",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "Mistral",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "openchat-3.5-1210-Q8",
"model_title": "OpenChat 3.5",
"model_file": "mistral-7b-instruct-v0.2.Q8.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/openchat/openchat_3.5",
"model_avatar": "logo_openchat",
"model_intention": "It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.",
"developer": "OpenChat Team",
"developer_url": "https://openchat.team/",
"file_size": 7695,
"context" : 4096,
"temp" : 0.6,
"prompt_format" : "<s>[INST]{{prompt}}[/INST]</s>",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "Mistral",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "phi-2",
"model_title": "Phi-2",
"model_file": "phi-2.Q8_0.gguf",
"model_url": "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/microsoft/phi-2",
"model_avatar": "logo_phi",
"model_intention": "It's a 2.7B model and is intended for QA, chat, and code purposes",
"model_license": "license_mit.txt",
"model_license_info": "The MIT License",
"model_license_url": "https://opensource.org/license/mit",
"model_description": "Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.",
"developer": "Microsoft",
"developer_url": "https://huggingface.co/microsoft/phi-2",
"file_size": 2960,
"context" : 4096,
"temp" : 0.6,
"prompt_format" : "Instruct: {{prompt}}\nOutput:",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "PHI",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "yi-6b",
"model_title": "Yi 6B Chat",
"model_file": "yi-6b-chat-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/01-ai/Yi-6B-Chat",
"model_avatar": "logo_yi",
"model_intention": "It's a 6B model and can understand English and Chinese. It's good for QA and Chat",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.",
"developer": "01.AI",
"developer_url": "https://01.ai/",
"file_size": 6440,
"context" : 200000,
"temp" : 0.6,
"prompt_format" : "<|im_start|>user\n<|im_end|>\n{{prompt}}\n<|im_start|>assistant\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "yi",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "gemma-2b",
"model_title": "Google Gemma 2B",
"model_file": "gemma-2b-it-q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/google/gemma-2b",
"model_avatar": "logo_google",
"model_intention": "It's a 2B large model for Q&A purpose. But it requires a high-end device to run.",
"model_license": "license_gemma.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).",
"developer": "Google",
"developer_url": "https://huggingface.co/google",
"file_size": 2669,
"context" : 8192,
"temp" : 0.6,
"prompt_format" : "<bos><start_of_turn>user\n{{prompt}}<end_of_turn>\n<start_of_turn>model\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "gemma",
"n_batch" : 10,
"template_name" : "gemma",
"is_ready": false,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "starcoder2-3b",
"model_title": "StarCoder2 3B",
"model_file": "starcoder2-3b-instruct-gguf_Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/bigcode/starcoder2-3b",
"model_avatar": "logo_starcoder",
"model_intention": "The model is good at 17 programming languages. It can help you resolve programming requirements",
"model_license": "license_bigcode.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens",
"developer": "Bigcode",
"developer_url": "https://www.bigcode-project.org/",
"file_size": 3220,
"context" : 8192,
"temp" : 0.6,
"prompt_format" : "### Instruction\n{{prompt}}### Response\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "starcoder",
"n_batch" : 10,
"template_name" : "starcoder",
"is_ready": false,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
}
]
|