flyingfishinwater commited on
Commit
5719315
·
verified ·
1 Parent(s): e92b03b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +386 -1
README.md CHANGED
@@ -1,3 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
+ # LiteLlama
2
+
3
+ It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
4
+
5
+ **Model Intention:** This is a 460 parameters' very small model for test purpose only
6
+
7
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true)
8
+
9
+ **Model Info URL:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
10
+
11
+ **Model License:** [License Info](https://ai.meta.com/llama/license/)
12
+
13
+ **Model Description:** It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
14
+
15
+ **Developer:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
16
+
17
+ **File Size:** 493 MB
18
+
19
+ **Context Length:** 1024 tokens
20
+
21
+ **Prompt Format:**
22
+
23
+ ```
24
+ <human>: {{prompt}}
25
+ <bot>:
26
+ ```
27
+
28
+ **Template Name:** TinyLlama
29
+
30
+ **Add BOS Token:** Yes
31
+
32
+ **Add EOS Token:** No
33
+
34
+ **Parse Special Tokens:** Yes
35
+
36
+
37
  ---
38
+
39
+ # TinyLlama-1.1B-chat
40
+
41
+ The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
42
+
43
+ **Model Intention:** It's good for question & answer.
44
+
45
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true)
46
+
47
+ **Model Info URL:** [https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
48
+
49
+ **Model License:** [License Info](https://ai.meta.com/llama/license/)
50
+
51
+ **Model Description:** The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
52
+
53
+ **Developer:** [https://github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama)
54
+
55
+ **File Size:** 1170 MB
56
+
57
+ **Context Length:** 4096 tokens
58
+
59
+ **Prompt Format:**
60
+
61
+ ```
62
+ <|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>
63
+ ```
64
+
65
+ **Template Name:** TinyLlama
66
+
67
+ **Add BOS Token:** Yes
68
+
69
+ **Add EOS Token:** No
70
+
71
+ **Parse Special Tokens:** Yes
72
+
73
+
74
+ ---
75
+
76
+ # Mistral 7B v0.2
77
+
78
+ The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
79
+
80
+ **Model Intention:** It's a 7B large model for Q&A purpose. But it requires a high-end device to run.
81
+
82
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true)
83
+
84
+ **Model Info URL:** [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
85
+
86
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
87
+
88
+ **Model Description:** The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
89
+
90
+ **Developer:** [https://mistral.ai/](https://mistral.ai/)
91
+
92
+ **File Size:** 7695 MB
93
+
94
+ **Context Length:** 4096 tokens
95
+
96
+ **Prompt Format:**
97
+
98
+ ```
99
+ <s>[INST]{{prompt}}[/INST]</s>
100
+ ```
101
+
102
+ **Template Name:** Mistral
103
+
104
+ **Add BOS Token:** Yes
105
+
106
+ **Add EOS Token:** No
107
+
108
+ **Parse Special Tokens:** Yes
109
+
110
+
111
+ ---
112
+
113
+ # OpenChat 3.5
114
+
115
+ OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
116
+
117
+ **Model Intention:** It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.
118
+
119
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true)
120
+
121
+ **Model Info URL:** [https://huggingface.co/openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
122
+
123
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
124
+
125
+ **Model Description:** OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
126
+
127
+ **Developer:** [https://openchat.team/](https://openchat.team/)
128
+
129
+ **File Size:** 7695 MB
130
+
131
+ **Context Length:** 4096 tokens
132
+
133
+ **Prompt Format:**
134
+
135
+ ```
136
+ <s>[INST]{{prompt}}[/INST]</s>
137
+ ```
138
+
139
+ **Template Name:** Mistral
140
+
141
+ **Add BOS Token:** Yes
142
+
143
+ **Add EOS Token:** No
144
+
145
+ **Parse Special Tokens:** Yes
146
+
147
+
148
+ ---
149
+
150
+ # Phi-2
151
+
152
+ Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
153
+
154
+ **Model Intention:** It's a 2.7B model and is intended for QA, chat, and code purposes
155
+
156
+ **Model URL:** [https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true](https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true)
157
+
158
+ **Model Info URL:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
159
+
160
+ **Model License:** [License Info](https://opensource.org/license/mit)
161
+
162
+ **Model Description:** Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
163
+
164
+ **Developer:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
165
+
166
+ **File Size:** 2960 MB
167
+
168
+ **Context Length:** 4096 tokens
169
+
170
+ **Prompt Format:**
171
+
172
+ ```
173
+ Instruct: {{prompt}}
174
+ Output:
175
+ ```
176
+
177
+ **Template Name:** PHI
178
+
179
+ **Add BOS Token:** Yes
180
+
181
+ **Add EOS Token:** No
182
+
183
+ **Parse Special Tokens:** Yes
184
+
185
+
186
+ ---
187
+
188
+ # Yi 6B Chat
189
+
190
+ The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
191
+
192
+ **Model Intention:** It's a 6B model and can understand English and Chinese. It's good for QA and Chat
193
+
194
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true)
195
+
196
+ **Model Info URL:** [https://huggingface.co/01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
197
+
198
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
199
+
200
+ **Model Description:** The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
201
+
202
+ **Developer:** [https://01.ai/](https://01.ai/)
203
+
204
+ **File Size:** 6440 MB
205
+
206
+ **Context Length:** 200000 tokens
207
+
208
+ **Prompt Format:**
209
+
210
+ ```
211
+ <|im_start|>user
212
+ <|im_end|>
213
+ {{prompt}}
214
+ <|im_start|>assistant
215
+
216
+ ```
217
+
218
+ **Template Name:** yi
219
+
220
+ **Add BOS Token:** Yes
221
+
222
+ **Add EOS Token:** No
223
+
224
+ **Parse Special Tokens:** Yes
225
+
226
+
227
+ ---
228
+
229
+ # Google Gemma 2B
230
+
231
+ Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
232
+
233
+ **Model Intention:** It's a 2B large model for Q&A purpose. But it requires a high-end device to run.
234
+
235
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true)
236
+
237
+ **Model Info URL:** [https://huggingface.co/google/gemma-2b](https://huggingface.co/google/gemma-2b)
238
+
239
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
240
+
241
+ **Model Description:** Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
242
+
243
+ **Developer:** [https://huggingface.co/google](https://huggingface.co/google)
244
+
245
+ **File Size:** 2669 MB
246
+
247
+ **Context Length:** 8192 tokens
248
+
249
+ **Prompt Format:**
250
+
251
+ ```
252
+ <bos><start_of_turn>user
253
+ {{prompt}}<end_of_turn>
254
+ <start_of_turn>model
255
+
256
+ ```
257
+
258
+ **Template Name:** gemma
259
+
260
+ **Add BOS Token:** Yes
261
+
262
+ **Add EOS Token:** No
263
+
264
+ **Parse Special Tokens:** Yes
265
+
266
+
267
+ ---
268
+
269
+ # StarCoder2 3B
270
+
271
+ StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
272
+
273
+ **Model Intention:** The model is good at 17 programming languages. It can help you resolve programming requirements
274
+
275
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true)
276
+
277
+ **Model Info URL:** [https://huggingface.co/bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b)
278
+
279
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
280
+
281
+ **Model Description:** StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
282
+
283
+ **Developer:** [https://www.bigcode-project.org/](https://www.bigcode-project.org/)
284
+
285
+ **File Size:** 3220 MB
286
+
287
+ **Context Length:** 8192 tokens
288
+
289
+ **Prompt Format:**
290
+
291
+ ```
292
+ ### Instruction
293
+ {{prompt}}### Response
294
+
295
+ ```
296
+
297
+ **Template Name:** starcoder
298
+
299
+ **Add BOS Token:** Yes
300
+
301
+ **Add EOS Token:** No
302
+
303
+ **Parse Special Tokens:** Yes
304
+
305
+
306
+ ---
307
+
308
+ # Chinese Tiny LLM 2B
309
+
310
+ Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
311
+
312
+ **Model Intention:** 这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力
313
+
314
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true)
315
+
316
+ **Model Info URL:** [https://chinese-tiny-llm.github.io/](https://chinese-tiny-llm.github.io/)
317
+
318
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
319
+
320
+ **Model Description:** Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
321
+
322
+ **Developer:** [https://m-a-p.ai/](https://m-a-p.ai/)
323
+
324
+ **File Size:** 2218 MB
325
+
326
+ **Context Length:** 4096 tokens
327
+
328
+ **Prompt Format:**
329
+
330
+ ```
331
+ <|im_start|>user
332
+ {{prompt}}
333
+ <|im_end|>
334
+ <|im_start|>assistant
335
+
336
+ ```
337
+
338
+ **Template Name:** chatml
339
+
340
+ **Add BOS Token:** Yes
341
+
342
+ **Add EOS Token:** No
343
+
344
+ **Parse Special Tokens:** Yes
345
+
346
+
347
+ ---
348
+
349
+ # Dophin 2.8 Mistralv02 7B
350
+
351
+ This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
352
+
353
+ **Model Intention:** It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac
354
+
355
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true)
356
+
357
+ **Model Info URL:** [https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
358
+
359
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
360
+
361
+ **Model Description:** This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
362
+
363
+ **Developer:** [https://erichartford.com/](https://erichartford.com/)
364
+
365
+ **File Size:** 2728 MB
366
+
367
+ **Context Length:** 16384 tokens
368
+
369
+ **Prompt Format:**
370
+
371
+ ```
372
+ <|im_start|>user
373
+ {{prompt}}
374
+ <|im_end|>
375
+ <|im_start|>assistant
376
+
377
+ ```
378
+
379
+ **Template Name:** chatml
380
+
381
+ **Add BOS Token:** Yes
382
+
383
+ **Add EOS Token:** No
384
+
385
+ **Parse Special Tokens:** Yes
386
+
387
+
388
  ---