--- license: apache-2.0 datasets: - HuggingFaceTB/smollm-corpus base_model: - HuggingFaceTB/SmolLM-360M pipeline_tag: text-generation --- **Research Paper** ["Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs"](https://arxiv.org/abs/2502.14837) ## Inference - Step 1: Download the [**monkey patch file**](https://github.com/JT-Ushio/MHA2MLA/blob/main/src/mha2mla/monkey_patch.py). ```shell wget https://raw.githubusercontent.com/JT-Ushio/MHA2MLA/refs/heads/main/src/mha2mla/monkey_patch.py ``` - Step 2(Option): For MHA2MLA models using Partial-RoPE 2-nrom method, Download the [**qk_2-norm file**](https://github.com/JT-Ushio/MHA2MLA/tree/main/utils). Take `qk_tensor_360M.pth` as an example: ```shell wget https://github.com/JT-Ushio/MHA2MLA/raw/refs/heads/main/utils/qk_tensor_360M.pth ``` - Step 3: Download the [MHA2MLA models](https://huggingface.co/fnlp/SmolLM-360M-MLA-d_kv_16) and run inference. Take `fnlp/SmolLM-360M-MLA-d_kv_16` as an example: ```python import torch from transformers import AutoConfig, AutoTokenizer, LlamaForCausalLM from monkey_patch import infer_monkey_patch model_name = "fnlp/SmolLM-360M-MLA-d_kv_16" # Monkey Patch: MHA -> MLA config = AutoConfig.from_pretrained(model_name) if "RoPE" in config: config.RoPE["qk_tensor_path"] = "qk_tensor_360M.pth" # Configuration for Specific Models infer_monkey_patch(config.RoPE) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = LlamaForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.bfloat16).cuda() # Generate text = "Which American-born Sinclair won the Nobel Prize for Literature in 1930?" inputs = tokenizer(text, return_tensors="pt").to(model.device) generation_kwargs = {"do_sample": False, "use_cache": True, "max_new_tokens": 128} output = model.generate(**inputs, **generation_kwargs) print(tokenizer.decode(output[0], skip_special_tokens=True)) # - Sinclair Lewis ``` ## Citation ``` @misc{ji2025economicalinferenceenablingdeepseeks, title={Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs}, author={Tao Ji and Bin Guo and Yuanbin Wu and Qipeng Guo and Lixing Shen and Zhan Chen and Xipeng Qiu and Qi Zhang and Tao Gui}, year={2025}, eprint={2502.14837}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.14837}, } ```