Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,66 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
-
- HuggingFaceTB/smollm-corpus
|
5 |
base_model:
|
6 |
-
- HuggingFaceTB/SmolLM-360M
|
7 |
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
10 |
-
**Research Paper** ["Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs"](https://arxiv.org/abs/2502.14837)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
+
- HuggingFaceTB/smollm-corpus
|
5 |
base_model:
|
6 |
+
- HuggingFaceTB/SmolLM-360M
|
7 |
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
10 |
+
**Research Paper** ["Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs"](https://arxiv.org/abs/2502.14837)
|
11 |
+
|
12 |
+
## Inference
|
13 |
+
|
14 |
+
- Step 1: Download the [**monkey patch file**](https://github.com/JT-Ushio/MHA2MLA/blob/main/src/mha2mla/monkey_patch.py).
|
15 |
+
```shell
|
16 |
+
wget https://raw.githubusercontent.com/JT-Ushio/MHA2MLA/refs/heads/main/src/mha2mla/monkey_patch.py
|
17 |
+
```
|
18 |
+
|
19 |
+
- Step 2(Option): For MHA2MLA models using Partial-RoPE 2-nrom method, Download the [**qk_2-norm file**](https://github.com/JT-Ushio/MHA2MLA/tree/main/utils).
|
20 |
+
Take `qk_tensor_360M.pth` as an example:
|
21 |
+
```shell
|
22 |
+
wget https://github.com/JT-Ushio/MHA2MLA/raw/refs/heads/main/utils/qk_tensor_360M.pth
|
23 |
+
```
|
24 |
+
|
25 |
+
- Step 3: Download the [MHA2MLA models](https://huggingface.co/fnlp/SmolLM-360M-MLA-d_kv_32) and run inference.
|
26 |
+
Take `fnlp/SmolLM-360M-MLA-d_kv_32` as an example:
|
27 |
+
|
28 |
+
```python
|
29 |
+
import torch
|
30 |
+
from transformers import AutoConfig, AutoTokenizer, LlamaForCausalLM
|
31 |
+
from monkey_patch import infer_monkey_patch
|
32 |
+
|
33 |
+
model_name = "fnlp/SmolLM-360M-MLA-d_kv_32"
|
34 |
+
|
35 |
+
# Monkey Patch: MHA -> MLA
|
36 |
+
config = AutoConfig.from_pretrained(model_name)
|
37 |
+
if "RoPE" in config:
|
38 |
+
config.RoPE["qk_tensor_path"] = "qk_tensor_360M.pth" # Configuration for Specific Models
|
39 |
+
infer_monkey_patch(config.RoPE)
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
42 |
+
model = LlamaForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.bfloat16).cuda()
|
43 |
+
|
44 |
+
# Generate
|
45 |
+
text = "Which American-born Sinclair won the Nobel Prize for Literature in 1930?"
|
46 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
47 |
+
generation_kwargs = {"do_sample": False, "use_cache": True, "max_new_tokens": 128}
|
48 |
+
output = model.generate(**inputs, **generation_kwargs)
|
49 |
+
|
50 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
51 |
+
# - Sinclair Lewis
|
52 |
+
```
|
53 |
+
|
54 |
+
## Citation
|
55 |
+
```
|
56 |
+
@misc{ji2025economicalinferenceenablingdeepseeks,
|
57 |
+
title={Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs},
|
58 |
+
author={Tao Ji and Bin Guo and Yuanbin Wu and Qipeng Guo and Lixing Shen and Zhan Chen and Xipeng Qiu and Qi Zhang and Tao Gui},
|
59 |
+
year={2025},
|
60 |
+
eprint={2502.14837},
|
61 |
+
archivePrefix={arXiv},
|
62 |
+
primaryClass={cs.CL},
|
63 |
+
url={https://arxiv.org/abs/2502.14837},
|
64 |
+
}
|
65 |
+
```
|
66 |
+
|