Upload modeling_moss.py with huggingface_hub
Browse files- modeling_moss.py +734 -0
modeling_moss.py
ADDED
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch Moss model."""
|
2 |
+
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
import transformers
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
from transformers.utils import (
|
14 |
+
add_code_sample_docstrings,
|
15 |
+
add_start_docstrings,
|
16 |
+
add_start_docstrings_to_model_forward,
|
17 |
+
logging
|
18 |
+
)
|
19 |
+
|
20 |
+
from .configuration_moss import MossConfig
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
_CHECKPOINT_FOR_DOC = "fnlp/moss-moon-003-base"
|
25 |
+
_CONFIG_FOR_DOC = "MossConfig"
|
26 |
+
|
27 |
+
|
28 |
+
MOSS_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
29 |
+
"fnlp/moss-moon-003-base",
|
30 |
+
"fnlp/moss-moon-003-sft",
|
31 |
+
"fnlp/moss-moon-003-sft-plugin",
|
32 |
+
"fnlp/moss-moon-003-sft-int4",
|
33 |
+
"fnlp/moss-moon-003-sft-plugin-int4",
|
34 |
+
"fnlp/moss-moon-003-sft-int8",
|
35 |
+
"fnlp/moss-moon-003-sft-plugin-int8",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
|
40 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
41 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
42 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
|
43 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
44 |
+
|
45 |
+
|
46 |
+
# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
|
47 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
48 |
+
x1 = x[:, :, :, ::2]
|
49 |
+
x2 = x[:, :, :, 1::2]
|
50 |
+
x = torch.stack((-x2, x1), dim=-1)
|
51 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
|
55 |
+
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
56 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
57 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
58 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
59 |
+
|
60 |
+
|
61 |
+
class MossAttention(nn.Module):
|
62 |
+
def __init__(self, config):
|
63 |
+
super().__init__()
|
64 |
+
|
65 |
+
max_positions = config.max_position_embeddings
|
66 |
+
self.register_buffer(
|
67 |
+
"causal_mask",
|
68 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
69 |
+
1, 1, max_positions, max_positions
|
70 |
+
),
|
71 |
+
)
|
72 |
+
|
73 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
74 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
75 |
+
|
76 |
+
self.embed_dim = config.hidden_size
|
77 |
+
self.num_attention_heads = config.num_attention_heads
|
78 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
79 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
80 |
+
raise ValueError(
|
81 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
82 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
83 |
+
)
|
84 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
85 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
86 |
+
|
87 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
88 |
+
self.rotary_dim = config.rotary_dim
|
89 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
90 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
91 |
+
|
92 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
93 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
|
94 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
|
95 |
+
return reshaped
|
96 |
+
|
97 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
98 |
+
"""
|
99 |
+
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
100 |
+
"""
|
101 |
+
if len(tensor.shape) == 5:
|
102 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
103 |
+
elif len(tensor.shape) == 4:
|
104 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
105 |
+
else:
|
106 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
107 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
108 |
+
return tensor.view(new_shape)
|
109 |
+
|
110 |
+
def _attn(
|
111 |
+
self,
|
112 |
+
query,
|
113 |
+
key,
|
114 |
+
value,
|
115 |
+
attention_mask=None,
|
116 |
+
head_mask=None,
|
117 |
+
):
|
118 |
+
# compute causal mask from causal mask buffer
|
119 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
120 |
+
causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
|
121 |
+
|
122 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
123 |
+
query = query.to(torch.float32)
|
124 |
+
key = key.to(torch.float32)
|
125 |
+
|
126 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
127 |
+
|
128 |
+
attn_weights = attn_weights / self.scale_attn
|
129 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
130 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
131 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
132 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
133 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
134 |
+
|
135 |
+
if attention_mask is not None:
|
136 |
+
# Apply the attention mask
|
137 |
+
attn_weights = attn_weights + attention_mask
|
138 |
+
|
139 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
140 |
+
attn_weights = attn_weights.to(value.dtype)
|
141 |
+
attn_weights = self.attn_dropout(attn_weights)
|
142 |
+
|
143 |
+
# Mask heads if we want to
|
144 |
+
if head_mask is not None:
|
145 |
+
attn_weights = attn_weights * head_mask
|
146 |
+
|
147 |
+
attn_output = torch.matmul(attn_weights, value)
|
148 |
+
|
149 |
+
return attn_output, attn_weights
|
150 |
+
|
151 |
+
def forward(
|
152 |
+
self,
|
153 |
+
hidden_states: Optional[torch.FloatTensor],
|
154 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
155 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
156 |
+
position_ids: Optional[torch.LongTensor] = None,
|
157 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
158 |
+
use_cache: Optional[bool] = False,
|
159 |
+
output_attentions: Optional[bool] = False,
|
160 |
+
) -> Union[
|
161 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
162 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
163 |
+
]:
|
164 |
+
qkv = self.qkv_proj(hidden_states)
|
165 |
+
# TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic
|
166 |
+
mp_num = 4
|
167 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
168 |
+
|
169 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
170 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
171 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
172 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
173 |
+
|
174 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
175 |
+
value = value.permute(0, 2, 1, 3)
|
176 |
+
|
177 |
+
embed_positions = self.embed_positions
|
178 |
+
if embed_positions.device != position_ids.device:
|
179 |
+
embed_positions = embed_positions.to(position_ids.device)
|
180 |
+
self.embed_positions = embed_positions
|
181 |
+
|
182 |
+
sincos = embed_positions[position_ids]
|
183 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
184 |
+
|
185 |
+
if self.rotary_dim is not None:
|
186 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
187 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
188 |
+
|
189 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
190 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
191 |
+
|
192 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
193 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
194 |
+
|
195 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
196 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
197 |
+
else:
|
198 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
199 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
200 |
+
|
201 |
+
key = key.permute(0, 2, 1, 3)
|
202 |
+
query = query.permute(0, 2, 1, 3)
|
203 |
+
|
204 |
+
if layer_past is not None:
|
205 |
+
past_key = layer_past[0]
|
206 |
+
past_value = layer_past[1]
|
207 |
+
key = torch.cat((past_key, key), dim=-2)
|
208 |
+
value = torch.cat((past_value, value), dim=-2)
|
209 |
+
|
210 |
+
if use_cache is True:
|
211 |
+
present = (key, value)
|
212 |
+
else:
|
213 |
+
present = None
|
214 |
+
|
215 |
+
# compute self-attention: V x Softmax(QK^T)
|
216 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
217 |
+
|
218 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
219 |
+
attn_output = self.out_proj(attn_output)
|
220 |
+
attn_output = self.resid_dropout(attn_output)
|
221 |
+
|
222 |
+
outputs = (attn_output, present)
|
223 |
+
if output_attentions:
|
224 |
+
outputs += (attn_weights,)
|
225 |
+
|
226 |
+
return outputs # a, present, (attentions)
|
227 |
+
|
228 |
+
|
229 |
+
# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->Moss
|
230 |
+
class MossMLP(nn.Module):
|
231 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
232 |
+
super().__init__()
|
233 |
+
embed_dim = config.n_embd
|
234 |
+
|
235 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
236 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
237 |
+
|
238 |
+
self.act = ACT2FN[config.activation_function]
|
239 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
240 |
+
|
241 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
242 |
+
hidden_states = self.fc_in(hidden_states)
|
243 |
+
hidden_states = self.act(hidden_states)
|
244 |
+
hidden_states = self.fc_out(hidden_states)
|
245 |
+
hidden_states = self.dropout(hidden_states)
|
246 |
+
return hidden_states
|
247 |
+
|
248 |
+
|
249 |
+
# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->Moss
|
250 |
+
class MossBlock(nn.Module):
|
251 |
+
def __init__(self, config):
|
252 |
+
super().__init__()
|
253 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
254 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
255 |
+
self.attn = MossAttention(config)
|
256 |
+
self.mlp = MossMLP(inner_dim, config)
|
257 |
+
|
258 |
+
def forward(
|
259 |
+
self,
|
260 |
+
hidden_states: Optional[torch.FloatTensor],
|
261 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
262 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
263 |
+
position_ids: Optional[torch.LongTensor] = None,
|
264 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
265 |
+
use_cache: Optional[bool] = False,
|
266 |
+
output_attentions: Optional[bool] = False,
|
267 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
268 |
+
residual = hidden_states
|
269 |
+
hidden_states = self.ln_1(hidden_states)
|
270 |
+
attn_outputs = self.attn(
|
271 |
+
hidden_states=hidden_states,
|
272 |
+
layer_past=layer_past,
|
273 |
+
attention_mask=attention_mask,
|
274 |
+
position_ids=position_ids,
|
275 |
+
head_mask=head_mask,
|
276 |
+
use_cache=use_cache,
|
277 |
+
output_attentions=output_attentions,
|
278 |
+
)
|
279 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
280 |
+
outputs = attn_outputs[1:]
|
281 |
+
|
282 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
283 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
284 |
+
|
285 |
+
if use_cache:
|
286 |
+
outputs = (hidden_states,) + outputs
|
287 |
+
else:
|
288 |
+
outputs = (hidden_states,) + outputs[1:]
|
289 |
+
|
290 |
+
return outputs # hidden_states, present, (attentions)
|
291 |
+
|
292 |
+
|
293 |
+
class MossPreTrainedModel(PreTrainedModel):
|
294 |
+
"""
|
295 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
296 |
+
models.
|
297 |
+
"""
|
298 |
+
|
299 |
+
config_class = MossConfig
|
300 |
+
base_model_prefix = "transformer"
|
301 |
+
supports_gradient_checkpointing = True
|
302 |
+
_no_split_modules = ["MossBlock"]
|
303 |
+
|
304 |
+
def __init__(self, *inputs, **kwargs):
|
305 |
+
super().__init__(*inputs, **kwargs)
|
306 |
+
|
307 |
+
def _init_weights(self, module):
|
308 |
+
"""Initialize the weights."""
|
309 |
+
if isinstance(module, (nn.Linear,)):
|
310 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
311 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
312 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
313 |
+
if module.bias is not None:
|
314 |
+
module.bias.data.zero_()
|
315 |
+
elif isinstance(module, nn.Embedding):
|
316 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
317 |
+
if module.padding_idx is not None:
|
318 |
+
module.weight.data[module.padding_idx].zero_()
|
319 |
+
elif isinstance(module, nn.LayerNorm):
|
320 |
+
module.bias.data.zero_()
|
321 |
+
module.weight.data.fill_(1.0)
|
322 |
+
|
323 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
324 |
+
if isinstance(module, MossModel):
|
325 |
+
module.gradient_checkpointing = value
|
326 |
+
|
327 |
+
|
328 |
+
MOSS_START_DOCSTRING = r"""
|
329 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
330 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
331 |
+
behavior.
|
332 |
+
|
333 |
+
Parameters:
|
334 |
+
config ([`MossConfig`]): Model configuration class with all the parameters of the model.
|
335 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
336 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
337 |
+
"""
|
338 |
+
|
339 |
+
MOSS_INPUTS_DOCSTRING = r"""
|
340 |
+
Args:
|
341 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
342 |
+
Indices of input sequence tokens in the vocabulary.
|
343 |
+
|
344 |
+
Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and
|
345 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
346 |
+
|
347 |
+
[What are input IDs?](../glossary#input-ids)
|
348 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
349 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
350 |
+
|
351 |
+
- 1 for tokens that are **not masked**,
|
352 |
+
- 0 for tokens that are **masked**.
|
353 |
+
|
354 |
+
[What are attention masks?](../glossary#attention-mask)
|
355 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
356 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
357 |
+
1]`:
|
358 |
+
|
359 |
+
- 0 corresponds to a *sentence A* token,
|
360 |
+
- 1 corresponds to a *sentence B* token.
|
361 |
+
|
362 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
363 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
364 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
365 |
+
config.n_positions - 1]`.
|
366 |
+
|
367 |
+
[What are position IDs?](../glossary#position-ids)
|
368 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
369 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
370 |
+
|
371 |
+
- 1 indicates the head is **not masked**,
|
372 |
+
- 0 indicates the head is **masked**.
|
373 |
+
|
374 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
375 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
376 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
377 |
+
model's internal embedding lookup matrix.
|
378 |
+
output_attentions (`bool`, *optional*):
|
379 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
380 |
+
tensors for more detail.
|
381 |
+
output_hidden_states (`bool`, *optional*):
|
382 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
383 |
+
more detail.
|
384 |
+
return_dict (`bool`, *optional*):
|
385 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
386 |
+
"""
|
387 |
+
|
388 |
+
|
389 |
+
@add_start_docstrings(
|
390 |
+
"The bare Moss Model transformer outputting raw hidden-states without any specific head on top.",
|
391 |
+
MOSS_START_DOCSTRING,
|
392 |
+
)
|
393 |
+
class MossModel(MossPreTrainedModel):
|
394 |
+
def __init__(self, config):
|
395 |
+
super().__init__(config)
|
396 |
+
|
397 |
+
self.embed_dim = config.n_embd
|
398 |
+
self.vocab_size = config.vocab_size
|
399 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
400 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
401 |
+
self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)])
|
402 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
403 |
+
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
404 |
+
|
405 |
+
self.gradient_checkpointing = False
|
406 |
+
|
407 |
+
# Initialize weights and apply final processing
|
408 |
+
self.post_init()
|
409 |
+
|
410 |
+
def get_input_embeddings(self):
|
411 |
+
return self.wte
|
412 |
+
|
413 |
+
def set_input_embeddings(self, new_embeddings):
|
414 |
+
self.wte = new_embeddings
|
415 |
+
|
416 |
+
@add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
417 |
+
@add_code_sample_docstrings(
|
418 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
419 |
+
output_type=BaseModelOutputWithPast,
|
420 |
+
config_class=_CONFIG_FOR_DOC,
|
421 |
+
)
|
422 |
+
def forward(
|
423 |
+
self,
|
424 |
+
input_ids: Optional[torch.LongTensor] = None,
|
425 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
426 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
427 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
428 |
+
position_ids: Optional[torch.LongTensor] = None,
|
429 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
430 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
431 |
+
use_cache: Optional[bool] = None,
|
432 |
+
output_attentions: Optional[bool] = None,
|
433 |
+
output_hidden_states: Optional[bool] = None,
|
434 |
+
return_dict: Optional[bool] = None,
|
435 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
436 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
437 |
+
output_hidden_states = (
|
438 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
439 |
+
)
|
440 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
441 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
442 |
+
|
443 |
+
if input_ids is not None and inputs_embeds is not None:
|
444 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
445 |
+
elif input_ids is not None:
|
446 |
+
input_shape = input_ids.size()
|
447 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
448 |
+
batch_size = input_ids.shape[0]
|
449 |
+
elif inputs_embeds is not None:
|
450 |
+
input_shape = inputs_embeds.size()[:-1]
|
451 |
+
batch_size = inputs_embeds.shape[0]
|
452 |
+
else:
|
453 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
454 |
+
|
455 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
456 |
+
|
457 |
+
if token_type_ids is not None:
|
458 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
459 |
+
|
460 |
+
if position_ids is not None:
|
461 |
+
position_ids = position_ids.view(-1, input_shape[-1]).long()
|
462 |
+
|
463 |
+
if past_key_values is None:
|
464 |
+
past_length = 0
|
465 |
+
past_key_values = tuple([None] * len(self.h))
|
466 |
+
else:
|
467 |
+
past_length = past_key_values[0][0].size(-2)
|
468 |
+
|
469 |
+
if position_ids is None:
|
470 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
471 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
472 |
+
|
473 |
+
# Attention mask.
|
474 |
+
if attention_mask is not None:
|
475 |
+
if batch_size <= 0:
|
476 |
+
raise ValueError("batch_size has to be defined and > 0")
|
477 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
478 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
479 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
480 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
481 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
482 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
483 |
+
attention_mask = attention_mask[:, None, None, :]
|
484 |
+
|
485 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
486 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
487 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
488 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
489 |
+
# effectively the same as removing these entirely.
|
490 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
491 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
492 |
+
|
493 |
+
# Prepare head mask if needed
|
494 |
+
# 1.0 in head_mask indicate we keep the head
|
495 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
496 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
497 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
498 |
+
|
499 |
+
if inputs_embeds is None:
|
500 |
+
inputs_embeds = self.wte(input_ids)
|
501 |
+
|
502 |
+
hidden_states = inputs_embeds
|
503 |
+
|
504 |
+
if token_type_ids is not None:
|
505 |
+
token_type_embeds = self.wte(token_type_ids)
|
506 |
+
hidden_states = hidden_states + token_type_embeds
|
507 |
+
|
508 |
+
hidden_states = self.drop(hidden_states)
|
509 |
+
|
510 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
511 |
+
|
512 |
+
if self.gradient_checkpointing and self.training:
|
513 |
+
if use_cache:
|
514 |
+
logger.warning_once(
|
515 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
516 |
+
"`use_cache=False`..."
|
517 |
+
)
|
518 |
+
use_cache = False
|
519 |
+
|
520 |
+
presents = () if use_cache else None
|
521 |
+
all_self_attentions = () if output_attentions else None
|
522 |
+
all_hidden_states = () if output_hidden_states else None
|
523 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
524 |
+
if output_hidden_states:
|
525 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
526 |
+
|
527 |
+
if self.gradient_checkpointing and self.training:
|
528 |
+
|
529 |
+
def create_custom_forward(module):
|
530 |
+
def custom_forward(*inputs):
|
531 |
+
# None for past_key_value
|
532 |
+
return module(*inputs, use_cache, output_attentions)
|
533 |
+
|
534 |
+
return custom_forward
|
535 |
+
|
536 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
537 |
+
create_custom_forward(block),
|
538 |
+
hidden_states,
|
539 |
+
None,
|
540 |
+
attention_mask,
|
541 |
+
position_ids,
|
542 |
+
head_mask[i],
|
543 |
+
)
|
544 |
+
else:
|
545 |
+
outputs = block(
|
546 |
+
hidden_states=hidden_states,
|
547 |
+
layer_past=layer_past,
|
548 |
+
attention_mask=attention_mask,
|
549 |
+
position_ids=position_ids,
|
550 |
+
head_mask=head_mask[i],
|
551 |
+
use_cache=use_cache,
|
552 |
+
output_attentions=output_attentions,
|
553 |
+
)
|
554 |
+
|
555 |
+
hidden_states = outputs[0]
|
556 |
+
if use_cache is True:
|
557 |
+
presents = presents + (outputs[1],)
|
558 |
+
|
559 |
+
if output_attentions:
|
560 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
561 |
+
|
562 |
+
hidden_states = self.ln_f(hidden_states)
|
563 |
+
|
564 |
+
hidden_states = hidden_states.view(output_shape)
|
565 |
+
# Add last hidden state
|
566 |
+
if output_hidden_states:
|
567 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
568 |
+
|
569 |
+
if not return_dict:
|
570 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
571 |
+
|
572 |
+
return BaseModelOutputWithPast(
|
573 |
+
last_hidden_state=hidden_states,
|
574 |
+
past_key_values=presents,
|
575 |
+
hidden_states=all_hidden_states,
|
576 |
+
attentions=all_self_attentions,
|
577 |
+
)
|
578 |
+
|
579 |
+
|
580 |
+
@add_start_docstrings(
|
581 |
+
"""
|
582 |
+
The Moss Model transformer with a language modeling head on top.
|
583 |
+
""",
|
584 |
+
MOSS_START_DOCSTRING,
|
585 |
+
)
|
586 |
+
class MossForCausalLM(MossPreTrainedModel):
|
587 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"]
|
588 |
+
|
589 |
+
def __init__(self, config):
|
590 |
+
super().__init__(config)
|
591 |
+
if config.wbits not in [4, 8, 32]:
|
592 |
+
logger.warning(f'Specify `wbits` with 4, 8 or 32 to load the model. ')
|
593 |
+
if config.wbits in [4, 8]:
|
594 |
+
def noop(*args, **kwargs):
|
595 |
+
pass
|
596 |
+
torch.nn.init.kaiming_uniform_ = noop
|
597 |
+
torch.nn.init.uniform_ = noop
|
598 |
+
torch.nn.init.normal_ = noop
|
599 |
+
|
600 |
+
torch.set_default_dtype(torch.half)
|
601 |
+
transformers.modeling_utils._init_weights = False
|
602 |
+
torch.set_default_dtype(torch.half)
|
603 |
+
self.transformer = MossModel(config)
|
604 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
605 |
+
if config.wbits in [4, 8]:
|
606 |
+
torch.set_default_dtype(torch.float)
|
607 |
+
transformers.modeling_utils._init_weights = True
|
608 |
+
self.quantize(config.wbits, config.groupsize)
|
609 |
+
# Initialize weights and apply final processing
|
610 |
+
self.post_init()
|
611 |
+
|
612 |
+
def get_output_embeddings(self):
|
613 |
+
return self.lm_head
|
614 |
+
|
615 |
+
def set_output_embeddings(self, new_embeddings):
|
616 |
+
self.lm_head = new_embeddings
|
617 |
+
|
618 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
619 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
620 |
+
# only last token for inputs_ids if past is defined in kwargs
|
621 |
+
if past_key_values:
|
622 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
623 |
+
if token_type_ids is not None:
|
624 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
625 |
+
|
626 |
+
attention_mask = kwargs.get("attention_mask", None)
|
627 |
+
position_ids = kwargs.get("position_ids", None)
|
628 |
+
|
629 |
+
if attention_mask is not None and position_ids is None:
|
630 |
+
# create position_ids on the fly for batch generation
|
631 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
632 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
633 |
+
if past_key_values:
|
634 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
635 |
+
|
636 |
+
return {
|
637 |
+
"input_ids": input_ids,
|
638 |
+
"past_key_values": past_key_values,
|
639 |
+
"use_cache": kwargs.get("use_cache"),
|
640 |
+
"position_ids": position_ids,
|
641 |
+
"attention_mask": attention_mask,
|
642 |
+
"token_type_ids": token_type_ids,
|
643 |
+
}
|
644 |
+
|
645 |
+
@add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
646 |
+
@add_code_sample_docstrings(
|
647 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
648 |
+
output_type=CausalLMOutputWithPast,
|
649 |
+
config_class=_CONFIG_FOR_DOC,
|
650 |
+
)
|
651 |
+
def forward(
|
652 |
+
self,
|
653 |
+
input_ids: Optional[torch.LongTensor] = None,
|
654 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
655 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
656 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
657 |
+
position_ids: Optional[torch.LongTensor] = None,
|
658 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
659 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
660 |
+
labels: Optional[torch.LongTensor] = None,
|
661 |
+
use_cache: Optional[bool] = None,
|
662 |
+
output_attentions: Optional[bool] = None,
|
663 |
+
output_hidden_states: Optional[bool] = None,
|
664 |
+
return_dict: Optional[bool] = None,
|
665 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
666 |
+
r"""
|
667 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
668 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
669 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
670 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
671 |
+
"""
|
672 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
673 |
+
|
674 |
+
transformer_outputs = self.transformer(
|
675 |
+
input_ids,
|
676 |
+
past_key_values=past_key_values,
|
677 |
+
attention_mask=attention_mask,
|
678 |
+
token_type_ids=token_type_ids,
|
679 |
+
position_ids=position_ids,
|
680 |
+
head_mask=head_mask,
|
681 |
+
inputs_embeds=inputs_embeds,
|
682 |
+
use_cache=use_cache,
|
683 |
+
output_attentions=output_attentions,
|
684 |
+
output_hidden_states=output_hidden_states,
|
685 |
+
return_dict=return_dict,
|
686 |
+
)
|
687 |
+
hidden_states = transformer_outputs[0]
|
688 |
+
|
689 |
+
# make sure sampling in fp16 works correctly and
|
690 |
+
# compute loss in fp32 to match with mesh-tf version
|
691 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
692 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
693 |
+
|
694 |
+
loss = None
|
695 |
+
if labels is not None:
|
696 |
+
# Shift so that tokens < n predict n
|
697 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
698 |
+
shift_labels = labels[..., 1:].contiguous()
|
699 |
+
# Flatten the tokens
|
700 |
+
loss_fct = CrossEntropyLoss()
|
701 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
702 |
+
|
703 |
+
loss = loss.to(hidden_states.dtype)
|
704 |
+
|
705 |
+
if not return_dict:
|
706 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
707 |
+
return ((loss,) + output) if loss is not None else output
|
708 |
+
|
709 |
+
return CausalLMOutputWithPast(
|
710 |
+
loss=loss,
|
711 |
+
logits=lm_logits,
|
712 |
+
past_key_values=transformer_outputs.past_key_values,
|
713 |
+
hidden_states=transformer_outputs.hidden_states,
|
714 |
+
attentions=transformer_outputs.attentions,
|
715 |
+
)
|
716 |
+
|
717 |
+
@staticmethod
|
718 |
+
def _reorder_cache(
|
719 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
720 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
721 |
+
"""
|
722 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
723 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
724 |
+
beam_idx at every generation step.
|
725 |
+
"""
|
726 |
+
return tuple(
|
727 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
728 |
+
for layer_past in past_key_values
|
729 |
+
)
|
730 |
+
|
731 |
+
def quantize(self, wbits, groupsize):
|
732 |
+
from .quantization import quantize_with_gptq
|
733 |
+
return quantize_with_gptq(self, wbits, groupsize)
|
734 |
+
|