nehulagrawal
commited on
Commit
•
78c94e9
1
Parent(s):
025f4ca
Upload 4 files
Browse files
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Swap Cloth
|
2 |
+
|
3 |
+
This project demonstrates a Cloth Swap feature using ComfyUI, enabling users to change clothing on images seamlessly. This guide provides step-by-step instructions to set up, use, and contribute to the project.
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<img width="500" alt="foduucom/stockmarket-pattern-detection-yolov8" src="https://huggingface.co/foduucom/stockmarket-pattern-detection-yolov8/resolve/main/thumbnail.jpg">
|
7 |
+
</div>
|
8 |
+
|
9 |
+
## Features
|
10 |
+
|
11 |
+
- Swap clothing on images with precision.
|
12 |
+
- Powered by ComfyUI's flexible architecture.
|
13 |
+
- Upload JSON workflows for customization.
|
14 |
+
- Simple, efficient, and open-source.
|
15 |
+
- Setup Instructions
|
16 |
+
|
17 |
+
|
18 |
+
## 1. Clone the Cloth Swap Repository
|
19 |
+
Clone the repository containing the Cloth Swap JSON workflows and assets:
|
20 |
+
|
21 |
+
```bash
|
22 |
+
Copy code
|
23 |
+
git clone <your-repo-url>
|
24 |
+
cd <your-repo-folder>
|
25 |
+
```
|
26 |
+
|
27 |
+
## 2. Clone ComfyUI Repository
|
28 |
+
|
29 |
+
Install ComfyUI by cloning its main repository:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
Copy code
|
33 |
+
git clone https://github.com/comfyanonymous/ComfyUI.git
|
34 |
+
cd ComfyUI
|
35 |
+
```
|
36 |
+
Install dependencies:
|
37 |
+
|
38 |
+
```bash
|
39 |
+
Copy code
|
40 |
+
pip install -r requirements.txt
|
41 |
+
```
|
42 |
+
|
43 |
+
Install ComfyUI Manager:
|
44 |
+
|
45 |
+
goto ComfyUI/custom_nodes dir in terminal(cmd) and clone this repo:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
Copy code
|
49 |
+
git clone https://github.com/ltdrdata/ComfyUI-Manager.git
|
50 |
+
```
|
51 |
+
Restart ComfyUI
|
52 |
+
|
53 |
+
To Start ComfyUI:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
Copy code
|
57 |
+
python3 main.py
|
58 |
+
```
|
59 |
+
Note: ComfyUI requires Python 3.9 or above. Ensure all required dependencies are installed.
|
60 |
+
|
61 |
+
Now Go to Manager ->-> Custom Nodes Manager and install this two nodes "ComfyUI Layer Style" and "ComfyUI_CatVTON_Wrapper", restart and reload the page.
|
62 |
+
|
63 |
+
<div align="center">
|
64 |
+
<img width="500" alt="foduucom/stockmarket-pattern-detection-yolov8" src="https://huggingface.co/foduucom/stockmarket-pattern-detection-yolov8/resolve/main/thumbnail.jpg">
|
65 |
+
</div>
|
66 |
+
|
67 |
+
Make sure you have "sam_vit_h_4b8939.pth" model inside ComfyUI/models/sams directory and "groundingdino_swint_ogc.pth" model in ComfyUI/models/grounding-dino directory if not download it.
|
68 |
+
(If directory name not there in ComfyUI/models/ create new)
|
69 |
+
|
70 |
+
- For Reference you can download model by below link:
|
71 |
+
https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth
|
72 |
+
https://huggingface.co/spaces/abhishek/StableSAM/resolve/main/sam_vit_h_4b8939.pth
|
73 |
+
|
74 |
+
|
75 |
+
## 3. How to use
|
76 |
+
|
77 |
+
- Start ComfyUI (by running python3 main.py)
|
78 |
+
- Open ComfyUI in your browser (default: http://127.0.0.1:8188)
|
79 |
+
- Click on Load button in menu bar and select the workflow.json file provided in this repository
|
80 |
+
- Now click on Queue Prompt for generate output
|
81 |
+
|
82 |
+
or you can use by python script provided in this repository:
|
83 |
+
```bash
|
84 |
+
python3 main.py
|
85 |
+
|
86 |
+
#Remember change the input paths in script here :
|
87 |
+
#prompt["2"]["inputs"]["image"] = "\\ put your input person pose image"
|
88 |
+
#prompt["3"]["inputs"]["image"] = "\\ put your input cloth image"
|
89 |
+
```
|
90 |
+
|
91 |
+
## 4. Using Cloth Swap
|
92 |
+
|
93 |
+
-Prepare your input images (ensure proper resolution for better results).
|
94 |
+
-Select the uploaded workflow in ComfyUI.
|
95 |
+
-Provide necessary inputs as per the workflow:
|
96 |
+
-Source Image: The base image where the clothing is to be swapped.
|
97 |
+
-Cloth Image: The image of the clothing to be applied.
|
98 |
+
-Start the process to generate swapped outputs.
|
99 |
+
-Save the generated images for further use.
|
100 |
+
|
101 |
+
|
102 |
+
## 5. Compute Infrastructure
|
103 |
+
|
104 |
+
## Hardware
|
105 |
+
|
106 |
+
NVIDIA GeForce RTX 3080 card
|
107 |
+
|
108 |
+
## Model Card Contact
|
109 |
+
|
110 |
+
For inquiries and contributions, please contact us at info@foduu.com.
|
111 |
+
|
112 |
+
```bibtex
|
113 |
+
@ModelCard{
|
114 |
+
author = {Nehul Agrawal and
|
115 |
+
Priyal Mehta},
|
116 |
+
title = {Cloth Swap},
|
117 |
+
year = {2024}
|
118 |
+
}
|
119 |
+
```
|
final.png
ADDED
main.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#This is an example that uses the websockets api to know when a prompt execution is done
|
2 |
+
#Once the prompt execution is done it downloads the images using the /history endpoint
|
3 |
+
|
4 |
+
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
5 |
+
import uuid
|
6 |
+
import json
|
7 |
+
import urllib.request
|
8 |
+
import urllib.parse
|
9 |
+
|
10 |
+
server_address = "127.0.0.1:8188"
|
11 |
+
client_id = str(uuid.uuid4())
|
12 |
+
|
13 |
+
def queue_prompt(prompt):
|
14 |
+
p = {"prompt": prompt, "client_id": client_id}
|
15 |
+
data = json.dumps(p).encode('utf-8')
|
16 |
+
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
|
17 |
+
return json.loads(urllib.request.urlopen(req).read())
|
18 |
+
|
19 |
+
def get_image(filename, subfolder, folder_type):
|
20 |
+
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
21 |
+
url_values = urllib.parse.urlencode(data)
|
22 |
+
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
|
23 |
+
return response.read()
|
24 |
+
|
25 |
+
def get_history(prompt_id):
|
26 |
+
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
27 |
+
return json.loads(response.read())
|
28 |
+
|
29 |
+
def get_images(ws, prompt):
|
30 |
+
prompt_id = queue_prompt(prompt)['prompt_id']
|
31 |
+
output_images = {}
|
32 |
+
while True:
|
33 |
+
out = ws.recv()
|
34 |
+
if isinstance(out, str):
|
35 |
+
message = json.loads(out)
|
36 |
+
if message['type'] == 'executing':
|
37 |
+
data = message['data']
|
38 |
+
if data['node'] is None and data['prompt_id'] == prompt_id:
|
39 |
+
break #Execution is done
|
40 |
+
else:
|
41 |
+
continue #previews are binary data
|
42 |
+
|
43 |
+
history = get_history(prompt_id)[prompt_id]
|
44 |
+
for node_id in history['outputs']:
|
45 |
+
node_output = history['outputs'][node_id]
|
46 |
+
images_output = []
|
47 |
+
if 'images' in node_output:
|
48 |
+
for image in node_output['images']:
|
49 |
+
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
50 |
+
images_output.append(image_data)
|
51 |
+
output_images[node_id] = images_output
|
52 |
+
|
53 |
+
return output_images
|
54 |
+
|
55 |
+
prompt_text = """
|
56 |
+
{
|
57 |
+
"1": {
|
58 |
+
"inputs": {
|
59 |
+
"sam_model": "sam_vit_h (2.56GB)",
|
60 |
+
"grounding_dino_model": "GroundingDINO_SwinT_OGC (694MB)",
|
61 |
+
"threshold": 0.3,
|
62 |
+
"detail_method": "VITMatte",
|
63 |
+
"detail_erode": 6,
|
64 |
+
"detail_dilate": 6,
|
65 |
+
"black_point": 0.01,
|
66 |
+
"white_point": 0.99,
|
67 |
+
"process_detail": false,
|
68 |
+
"prompt": "shirt",
|
69 |
+
"device": "cuda",
|
70 |
+
"max_megapixels": 2,
|
71 |
+
"cache_model": true,
|
72 |
+
"image": [
|
73 |
+
"2",
|
74 |
+
0
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"class_type": "LayerMask: SegmentAnythingUltra V2",
|
78 |
+
"_meta": {
|
79 |
+
"title": "LayerMask: SegmentAnythingUltra V2"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"2": {
|
83 |
+
"inputs": {
|
84 |
+
"image": "q.jpg",
|
85 |
+
"upload": "image"
|
86 |
+
},
|
87 |
+
"class_type": "LoadImage",
|
88 |
+
"_meta": {
|
89 |
+
"title": "Load Image"
|
90 |
+
}
|
91 |
+
},
|
92 |
+
"3": {
|
93 |
+
"inputs": {
|
94 |
+
"image": "tshirt.jpeg",
|
95 |
+
"upload": "image"
|
96 |
+
},
|
97 |
+
"class_type": "LoadImage",
|
98 |
+
"_meta": {
|
99 |
+
"title": "Load Image"
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"5": {
|
103 |
+
"inputs": {
|
104 |
+
"mask_grow": 25,
|
105 |
+
"mixed_precision": "fp16",
|
106 |
+
"seed": 95593377186337,
|
107 |
+
"steps": 40,
|
108 |
+
"cfg": 2.5,
|
109 |
+
"image": [
|
110 |
+
"2",
|
111 |
+
0
|
112 |
+
],
|
113 |
+
"mask": [
|
114 |
+
"1",
|
115 |
+
1
|
116 |
+
],
|
117 |
+
"refer_image": [
|
118 |
+
"3",
|
119 |
+
0
|
120 |
+
]
|
121 |
+
},
|
122 |
+
"class_type": "CatVTONWrapper",
|
123 |
+
"_meta": {
|
124 |
+
"title": "CatVTON Wrapper"
|
125 |
+
}
|
126 |
+
},
|
127 |
+
"6": {
|
128 |
+
"inputs": {
|
129 |
+
"images": [
|
130 |
+
"5",
|
131 |
+
0
|
132 |
+
]
|
133 |
+
},
|
134 |
+
"class_type": "PreviewImage",
|
135 |
+
"_meta": {
|
136 |
+
"title": "Preview Image"
|
137 |
+
}
|
138 |
+
}
|
139 |
+
}"""
|
140 |
+
|
141 |
+
prompt = json.loads(prompt_text)
|
142 |
+
|
143 |
+
prompt["2"]["inputs"]["image"] = "\\ put your input person pose image"
|
144 |
+
prompt["3"]["inputs"]["image"] = "\\ put your input cloth image"
|
145 |
+
|
146 |
+
ws = websocket.WebSocket()
|
147 |
+
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
|
148 |
+
images = get_images(ws, prompt)
|
149 |
+
|
150 |
+
# Commented out code to display the output images:
|
151 |
+
|
152 |
+
for node_id in images:
|
153 |
+
for image_data in images[node_id]:
|
154 |
+
from PIL import Image
|
155 |
+
import io
|
156 |
+
image = Image.open(io.BytesIO(image_data))
|
157 |
+
image.save("output.jpg")
|
158 |
+
# image.show()
|
159 |
+
|
160 |
+
|
workflow.json
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 6,
|
3 |
+
"last_link_id": 6,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 1,
|
7 |
+
"type": "LayerMask: SegmentAnythingUltra V2",
|
8 |
+
"pos": {
|
9 |
+
"0": 400,
|
10 |
+
"1": 184
|
11 |
+
},
|
12 |
+
"size": [
|
13 |
+
320.8495699999994,
|
14 |
+
366
|
15 |
+
],
|
16 |
+
"flags": {},
|
17 |
+
"order": 2,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "image",
|
22 |
+
"type": "IMAGE",
|
23 |
+
"link": 1
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "image",
|
29 |
+
"type": "IMAGE",
|
30 |
+
"links": null
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"name": "mask",
|
34 |
+
"type": "MASK",
|
35 |
+
"links": [
|
36 |
+
2,
|
37 |
+
6
|
38 |
+
],
|
39 |
+
"slot_index": 1
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"properties": {
|
43 |
+
"Node name for S&R": "LayerMask: SegmentAnythingUltra V2"
|
44 |
+
},
|
45 |
+
"widgets_values": [
|
46 |
+
"sam_vit_h (2.56GB)",
|
47 |
+
"GroundingDINO_SwinT_OGC (694MB)",
|
48 |
+
0.3,
|
49 |
+
"VITMatte",
|
50 |
+
6,
|
51 |
+
6,
|
52 |
+
0.01,
|
53 |
+
0.99,
|
54 |
+
false,
|
55 |
+
"shirt",
|
56 |
+
"cuda",
|
57 |
+
2,
|
58 |
+
true
|
59 |
+
],
|
60 |
+
"color": "rgba(27, 80, 119, 0.7)"
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"id": 4,
|
64 |
+
"type": "LayerMask: MaskPreview",
|
65 |
+
"pos": {
|
66 |
+
"0": 749,
|
67 |
+
"1": 293
|
68 |
+
},
|
69 |
+
"size": [
|
70 |
+
241.8495699999994,
|
71 |
+
249.08422000000064
|
72 |
+
],
|
73 |
+
"flags": {},
|
74 |
+
"order": 3,
|
75 |
+
"mode": 0,
|
76 |
+
"inputs": [
|
77 |
+
{
|
78 |
+
"name": "mask",
|
79 |
+
"type": "MASK",
|
80 |
+
"link": 2
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"outputs": [],
|
84 |
+
"properties": {
|
85 |
+
"Node name for S&R": "LayerMask: MaskPreview"
|
86 |
+
},
|
87 |
+
"widgets_values": [],
|
88 |
+
"color": "rgba(27, 80, 119, 0.7)"
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"id": 5,
|
92 |
+
"type": "CatVTONWrapper",
|
93 |
+
"pos": {
|
94 |
+
"0": 742,
|
95 |
+
"1": 22
|
96 |
+
},
|
97 |
+
"size": {
|
98 |
+
"0": 315,
|
99 |
+
"1": 218
|
100 |
+
},
|
101 |
+
"flags": {},
|
102 |
+
"order": 4,
|
103 |
+
"mode": 0,
|
104 |
+
"inputs": [
|
105 |
+
{
|
106 |
+
"name": "image",
|
107 |
+
"type": "IMAGE",
|
108 |
+
"link": 4
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"name": "mask",
|
112 |
+
"type": "MASK",
|
113 |
+
"link": 6
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"name": "refer_image",
|
117 |
+
"type": "IMAGE",
|
118 |
+
"link": 3
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"name": "image",
|
124 |
+
"type": "IMAGE",
|
125 |
+
"links": [
|
126 |
+
5
|
127 |
+
],
|
128 |
+
"slot_index": 0
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"properties": {
|
132 |
+
"Node name for S&R": "CatVTONWrapper"
|
133 |
+
},
|
134 |
+
"widgets_values": [
|
135 |
+
25,
|
136 |
+
"fp16",
|
137 |
+
595025660139604,
|
138 |
+
"randomize",
|
139 |
+
40,
|
140 |
+
2.5
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"id": 6,
|
145 |
+
"type": "PreviewImage",
|
146 |
+
"pos": {
|
147 |
+
"0": 1079,
|
148 |
+
"1": 33
|
149 |
+
},
|
150 |
+
"size": [
|
151 |
+
333.8495699999994,
|
152 |
+
431.08422000000064
|
153 |
+
],
|
154 |
+
"flags": {},
|
155 |
+
"order": 5,
|
156 |
+
"mode": 0,
|
157 |
+
"inputs": [
|
158 |
+
{
|
159 |
+
"name": "images",
|
160 |
+
"type": "IMAGE",
|
161 |
+
"link": 5
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"outputs": [],
|
165 |
+
"properties": {
|
166 |
+
"Node name for S&R": "PreviewImage"
|
167 |
+
},
|
168 |
+
"widgets_values": []
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"id": 2,
|
172 |
+
"type": "LoadImage",
|
173 |
+
"pos": {
|
174 |
+
"0": 12,
|
175 |
+
"1": -81
|
176 |
+
},
|
177 |
+
"size": [
|
178 |
+
357.84956999999935,
|
179 |
+
383.08422000000064
|
180 |
+
],
|
181 |
+
"flags": {},
|
182 |
+
"order": 0,
|
183 |
+
"mode": 0,
|
184 |
+
"inputs": [],
|
185 |
+
"outputs": [
|
186 |
+
{
|
187 |
+
"name": "IMAGE",
|
188 |
+
"type": "IMAGE",
|
189 |
+
"links": [
|
190 |
+
1,
|
191 |
+
4
|
192 |
+
],
|
193 |
+
"slot_index": 0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"name": "MASK",
|
197 |
+
"type": "MASK",
|
198 |
+
"links": null
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"properties": {
|
202 |
+
"Node name for S&R": "LoadImage"
|
203 |
+
},
|
204 |
+
"widgets_values": [
|
205 |
+
"q.jpg",
|
206 |
+
"image"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"id": 3,
|
211 |
+
"type": "LoadImage",
|
212 |
+
"pos": {
|
213 |
+
"0": 58,
|
214 |
+
"1": 297
|
215 |
+
},
|
216 |
+
"size": {
|
217 |
+
"0": 315,
|
218 |
+
"1": 314
|
219 |
+
},
|
220 |
+
"flags": {},
|
221 |
+
"order": 1,
|
222 |
+
"mode": 0,
|
223 |
+
"inputs": [],
|
224 |
+
"outputs": [
|
225 |
+
{
|
226 |
+
"name": "IMAGE",
|
227 |
+
"type": "IMAGE",
|
228 |
+
"links": [
|
229 |
+
3
|
230 |
+
],
|
231 |
+
"slot_index": 0
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "MASK",
|
235 |
+
"type": "MASK",
|
236 |
+
"links": null
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"properties": {
|
240 |
+
"Node name for S&R": "LoadImage"
|
241 |
+
},
|
242 |
+
"widgets_values": [
|
243 |
+
"tshirt.jpeg",
|
244 |
+
"image"
|
245 |
+
]
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"links": [
|
249 |
+
[
|
250 |
+
1,
|
251 |
+
2,
|
252 |
+
0,
|
253 |
+
1,
|
254 |
+
0,
|
255 |
+
"IMAGE"
|
256 |
+
],
|
257 |
+
[
|
258 |
+
2,
|
259 |
+
1,
|
260 |
+
1,
|
261 |
+
4,
|
262 |
+
0,
|
263 |
+
"MASK"
|
264 |
+
],
|
265 |
+
[
|
266 |
+
3,
|
267 |
+
3,
|
268 |
+
0,
|
269 |
+
5,
|
270 |
+
2,
|
271 |
+
"IMAGE"
|
272 |
+
],
|
273 |
+
[
|
274 |
+
4,
|
275 |
+
2,
|
276 |
+
0,
|
277 |
+
5,
|
278 |
+
0,
|
279 |
+
"IMAGE"
|
280 |
+
],
|
281 |
+
[
|
282 |
+
5,
|
283 |
+
5,
|
284 |
+
0,
|
285 |
+
6,
|
286 |
+
0,
|
287 |
+
"IMAGE"
|
288 |
+
],
|
289 |
+
[
|
290 |
+
6,
|
291 |
+
1,
|
292 |
+
1,
|
293 |
+
5,
|
294 |
+
1,
|
295 |
+
"MASK"
|
296 |
+
]
|
297 |
+
],
|
298 |
+
"groups": [],
|
299 |
+
"config": {},
|
300 |
+
"extra": {
|
301 |
+
"ds": {
|
302 |
+
"scale": 0.9090909090909091,
|
303 |
+
"offset": [
|
304 |
+
-31.689569999999357,
|
305 |
+
95.6457799999993
|
306 |
+
]
|
307 |
+
}
|
308 |
+
},
|
309 |
+
"version": 0.4
|
310 |
+
}
|