File size: 1,650 Bytes
232eacf 13151af 9faa7aa 232eacf 9faa7aa 782dc71 c39a8c3 232eacf 13151af 232eacf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
instance_prompt: Hyundai N Vision 74 car
widget:
- text: >-
Hyundai N Vision 74 car driving fast along a tropical beach road
output:
url: https://replicate.delivery/yhqm/9a6E6if5eWgydEDNizsLmO1Mec3xUnOJFVieZw7yBGLdNiiNB/out-3.webp
- text: >-
Hyundai N Vision 74 car driving fast along a tropical beach road
output:
url: https://replicate.delivery/yhqm/K3Efzz3uZWx0KqMjbr4BQn3YfBBBinO3WYqwYjtt4JKXjoYTA/out-2.webp
---
# Flux Hyundai N Vision 74
<Gallery />
Run on Replicate:
https://replicate.com/fofr/flux-hyundai-n-vision-74
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Hyundai N Vision 74 car` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('fofr/flux-hyundai-n-vision-74', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|