fprogr commited on
Commit
2c0b0b3
·
1 Parent(s): 85b2b7f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.12 +/- 38.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7968b99d2200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7968b99d2290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7968b99d2320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7968b99d23b0>", "_build": "<function ActorCriticPolicy._build at 0x7968b99d2440>", "forward": "<function ActorCriticPolicy.forward at 0x7968b99d24d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7968b99d2560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7968b99d25f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7968b99d2680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7968b99d2710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7968b99d27a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7968b99d2830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7968b99d4a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699573882975787581, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHO52z2vgFk/aiEtPsD8C78roAI+cEcKPQAAAAAAAAAAZi9EPm2AJz/rMC0+fWf6vuUTPj7bxN29AAAAAAAAAACThGi+9x4HvW2YJL62Xq68AKNsPgH+gj0AAIA/AACAPxo2yT0jqog/BrhGPhwyJ7+7PTo9ku4dPAAAAAAAAAAA87s/Pu7eo7zQCXQ72ybluZTDF75irrq6AACAPwAAgD867H8+I3AiP7pdDL2+rNC+6BOjPQ1y6bwAAAAAAAAAANoDRT6o+Je8UD0+O/N6jrnevQW+23N5ugAAgD8AAIA/bVw2PsXmrzx0Wry+xX5vvUtdVz4Oeq69AACAPwAAgD+gh4g+vtx+P2rg3T5ycQ2/kBN0Pub+FT0AAAAAAAAAACO7uz4UQZ0+dufRvVCik76AJ6M9Xp4EvgAAAAAAAAAAM3XBvZXwrj8e23m+/akOv5Ul3701vhe9AAAAAAAAAAAChqq+1wnNPlJvGT4mzLi+KSKuvYX4gzwAAAAAAAAAAMC9Ir7Fq948YlJdPuKWSb4zJTS8BhoivAAAAAAAAAAA84kiPvVZ4j75AZg9kcDAvmGCOz1h7Rw9AAAAAAAAAAAtezA+13hBPiGywL1+sXW+f39eu3rEcb0AAAAAAAAAAMDZTj66VgS9s4CBPKBcLruALWi+hlwDvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB5YXTEzfuMAWyUS++MAXSUR0CXbQW3Sa3JdX2UKGgGR0ByG514gRseaAdL/mgIR0CXbSfvWpZPdX2UKGgGR0Bx9vrD63y7aAdL9WgIR0CXcLj+717IdX2UKGgGR0BuufIGQjlgaAdL3mgIR0CXccdBjWkKdX2UKGgGR0BwNXSpiqhlaAdL6WgIR0CXck+6Ae7udX2UKGgGR0Bv054W1twaaAdL7GgIR0CXcqa37UG3dX2UKGgGR0BxmvKOktVaaAdNAAFoCEdAl3NxZIQOF3V9lChoBkdAchSxjJ+2E2gHS/doCEdAl3Rn6MzdlHV9lChoBkdAcM9rdnCfpWgHS/toCEdAl3ewavRqoXV9lChoBkdAcehJr+Hae2gHTQgBaAhHQJd6MZ88cMp1fZQoaAZHQG8n46GQCCBoB0v7aAhHQJd6whxHXmN1fZQoaAZHQHEpaTwDvE1oB00DAWgIR0CXeusXizcAdX2UKGgGR0BxXhY1YQrdaAdNAgFoCEdAl3sdI5HVgHV9lChoBkdAcLUK3uuzQmgHTQ4BaAhHQJd7ZNet0V91fZQoaAZHQG9mAzYVZcNoB00NAmgIR0CXfXT238XOdX2UKGgGR0BxfjeUILPVaAdNHwFoCEdAl37j7Ikqt3V9lChoBkdAcJoBkqc3EWgHS+BoCEdAl38G3fAKv3V9lChoBkdAcMwHNHH3lGgHS/toCEdAl39ZDeCTU3V9lChoBkdAcVkvFm4Aj2gHTQ0BaAhHQJd/da+vhZR1fZQoaAZHQHFuBw6ySmtoB00aAWgIR0CXf7jOcDr7dX2UKGgGR0BvR9qveP7vaAdNKQFoCEdAl3/pAD7qIXV9lChoBkdAcNZ39aUzK2gHS8ZoCEdAl4A48yN4q3V9lChoBkdAYs/fdhy8z2gHTegDaAhHQJeAQtWdVed1fZQoaAZHQFFoXOGCZndoB03oA2gIR0CXgPdvbXYldX2UKGgGR0BsQkQ04zacaAdNdQJoCEdAl4KYRIz3y3V9lChoBkdAbyyDQqqfe2gHS/NoCEdAl4LEyP+4snV9lChoBkdAboyXb/Ot4mgHS+1oCEdAl4NHueBg/nV9lChoBkdAb5sSrYGt62gHS/NoCEdAl4NJwOvt+nV9lChoBkdAchxQemvW6WgHS/toCEdAl4PZNTLntHV9lChoBkdAciQR+BpYcWgHTS8BaAhHQJeE1VHWjGl1fZQoaAZHQG1bmSpzcRFoB0vtaAhHQJeFAeIVM251fZQoaAZHQHAKdV7x/d9oB0veaAhHQJeFjjKgZjx1fZQoaAZHQGySHIhhYvFoB0vlaAhHQJeF2/cnE2p1fZQoaAZHQHBHVE3Kji5oB0vhaAhHQJeGAQnQY1p1fZQoaAZHQHIRkWhysCFoB0vaaAhHQJeGNCUornV1fZQoaAZHQHBq+QhfShJoB0vsaAhHQJeGW0ojOcF1fZQoaAZHQG9Jg93bEgpoB0vfaAhHQJeGmx5cC5p1fZQoaAZHQHDZ6pkwvg5oB0vMaAhHQJeGun0kGA11fZQoaAZHQHGTK0dBBzFoB0vyaAhHQJeHAtNBWxR1fZQoaAZHQHFTlg+hXbNoB00cAWgIR0CXh6N/vv0AdX2UKGgGR0ByDKogmqo7aAdL8WgIR0CXielkpZwGdX2UKGgGR0BxaQW0qpcYaAdL5GgIR0CXijUHY6GQdX2UKGgGR0BuKUJOWSlnaAdNEQFoCEdAl4rtqk/KQ3V9lChoBkdAck1xN7BwdmgHTTMBaAhHQJeLec2BJ7N1fZQoaAZHQHItb26ClJpoB0v0aAhHQJeMs9ZA6dV1fZQoaAZHQG4N575VOsVoB00MAWgIR0CXjLLzwtrcdX2UKGgGR0Bwp0gdOqNqaAdL1WgIR0CXjPTPBzmwdX2UKGgGR0BvU+SfUWl/aAdL9mgIR0CXjUmplz2fdX2UKGgGR0Bw0bwrlNlAaAdL5GgIR0CXjagMMI/rdX2UKGgGR0BwxSnpB5X2aAdNAAFoCEdAl43kA93bEnV9lChoBkdAcMH4jKPn0WgHS+xoCEdAl45UwFkhBHV9lChoBkdAcRhI42jwhGgHS91oCEdAl46vovBacXV9lChoBkdAceNmWt2cKGgHTWMBaAhHQJeQrl3hXKd1fZQoaAZHQHF7nQhOgxtoB0vPaAhHQJeQxLEk0Jp1fZQoaAZHQHHobRjSXt1oB00IAWgIR0CXkw+HaewtdX2UKGgGR0Bw8v0Zm7J5aAdNAQFoCEdAl5RYbCJoCnV9lChoBkdAcRdnL7oB72gHTRQBaAhHQJeUcAFPi1l1fZQoaAZHQG8ZubqhUR5oB0vxaAhHQJeVD2rXDm91fZQoaAZHQHHDl6u4gA9oB0vbaAhHQJeVRoQFs551fZQoaAZHQHJf+Z1FH8VoB0v9aAhHQJeVhmJ3xF11fZQoaAZHQG/ijeCTUy5oB0vxaAhHQJeW18w5/9Z1fZQoaAZHQG/cHTI/7i1oB0v/aAhHQJeXzgrH2h91fZQoaAZHQHEgJKjBVMpoB00YAWgIR0CXl8iNbTttdX2UKGgGR0BuK3j2i+L4aAdL1WgIR0CXmGrbxmTUdX2UKGgGR0Bw2X0Dlo12aAdL92gIR0CXmaG+9Jz1dX2UKGgGR0BvSQ+nqFAWaAdL2mgIR0CXmuc9W6sidX2UKGgGR0BwkQFNcnmaaAdL3GgIR0CXnDv4ubqhdX2UKGgGR0Bx1YXj2i+MaAdL62gIR0CXnLkn1FpgdX2UKGgGR0BxjibAk9lmaAdL6WgIR0CXnZSIP9UCdX2UKGgGR0BxugDbJwKjaAdL/WgIR0CXnpcTakAQdX2UKGgGR0BruVb1RLsbaAdN+QFoCEdAl57RrN4Z/HV9lChoBkdAc1aNu+AVf2gHTRwBaAhHQJefPDfm9xp1fZQoaAZHQHBJ9ELH+61oB0vbaAhHQJefjmig00p1fZQoaAZHQHEN5x7zCk5oB0v6aAhHQJegm1RceKd1fZQoaAZHQHFeX3xnWatoB0vsaAhHQJeg0Eq2Brh1fZQoaAZHQHEGutSydFxoB0vqaAhHQJeiKRMewLV1fZQoaAZHQHEBzynUDuBoB0vwaAhHQJekQbtJFsp1fZQoaAZHQFk7Dv3JxNtoB03oA2gIR0CXpIUwztTldX2UKGgGR0BwFff/FR51aAdL7WgIR0CXpqbt7a7FdX2UKGgGR0BxieMUAT7EaAdLxWgIR0CXpyAXVLBbdX2UKGgGR0Bo58JdB0IUaAdN0wNoCEdAl6fIUJv5xnV9lChoBkdARZQldC3PRmgHS79oCEdAl6fHi3ocJnV9lChoBkdAcLWtdiUgS2gHS/9oCEdAl6ieotL+P3V9lChoBkdAcC5rULDyfGgHS+FoCEdAl6jA1ivxIHV9lChoBkdAcxixubZvk2gHTS4BaAhHQJepJXPqs2h1fZQoaAZHQHFO6sMiKSBoB0vdaAhHQJepg1k1/Dt1fZQoaAZHQHDrx2W6bvxoB0vWaAhHQJequoP07Kd1fZQoaAZHQGRE2xY7q6hoB03oA2gIR0CXqrkt29tedX2UKGgGR0ByhvGS6lLwaAdNEAFoCEdAl68y7PIGQnV9lChoBkdAceEdAPd2xWgHS/BoCEdAl7ABXKbKBHV9lChoBkdAcCvU7jkuH2gHS9NoCEdAl7HW0zCUHXV9lChoBkdAcMRm03Ov+2gHS/RoCEdAl7Lg8fV7QnV9lChoBkdAcQkZ/kNnXmgHS/5oCEdAl7Lt/z8P4HV9lChoBkdAcdYtWdVebGgHTTcBaAhHQJezdew9q1x1fZQoaAZHQHBJkEC/47BoB0vvaAhHQJe0XH6uW8h1fZQoaAZHQG2UGWUr08NoB00BAWgIR0CXtciXIEKWdX2UKGgGR0BwEkNnXd0raAdL3WgIR0CXteSwW3z+dX2UKGgGR0By6nW6K+BZaAdL5WgIR0CXtkOARTS9dX2UKGgGR0BXKVsk6cRUaAdN6ANoCEdAl7ZsTJyQxXV9lChoBkdAcDCFBppN9GgHTTABaAhHQJe2lXlr/Kh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:084dcfe1d2fd0b64afeadc5a2502e1f5b184c241e872d0f0aadb0600a9d664f0
3
+ size 147969
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7968b99d2200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7968b99d2290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7968b99d2320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7968b99d23b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7968b99d2440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7968b99d24d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7968b99d2560>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7968b99d25f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7968b99d2680>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7968b99d2710>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7968b99d27a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7968b99d2830>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7968b99d4a40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1699573882975787581,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHO52z2vgFk/aiEtPsD8C78roAI+cEcKPQAAAAAAAAAAZi9EPm2AJz/rMC0+fWf6vuUTPj7bxN29AAAAAAAAAACThGi+9x4HvW2YJL62Xq68AKNsPgH+gj0AAIA/AACAPxo2yT0jqog/BrhGPhwyJ7+7PTo9ku4dPAAAAAAAAAAA87s/Pu7eo7zQCXQ72ybluZTDF75irrq6AACAPwAAgD867H8+I3AiP7pdDL2+rNC+6BOjPQ1y6bwAAAAAAAAAANoDRT6o+Je8UD0+O/N6jrnevQW+23N5ugAAgD8AAIA/bVw2PsXmrzx0Wry+xX5vvUtdVz4Oeq69AACAPwAAgD+gh4g+vtx+P2rg3T5ycQ2/kBN0Pub+FT0AAAAAAAAAACO7uz4UQZ0+dufRvVCik76AJ6M9Xp4EvgAAAAAAAAAAM3XBvZXwrj8e23m+/akOv5Ul3701vhe9AAAAAAAAAAAChqq+1wnNPlJvGT4mzLi+KSKuvYX4gzwAAAAAAAAAAMC9Ir7Fq948YlJdPuKWSb4zJTS8BhoivAAAAAAAAAAA84kiPvVZ4j75AZg9kcDAvmGCOz1h7Rw9AAAAAAAAAAAtezA+13hBPiGywL1+sXW+f39eu3rEcb0AAAAAAAAAAMDZTj66VgS9s4CBPKBcLruALWi+hlwDvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB5YXTEzfuMAWyUS++MAXSUR0CXbQW3Sa3JdX2UKGgGR0ByG514gRseaAdL/mgIR0CXbSfvWpZPdX2UKGgGR0Bx9vrD63y7aAdL9WgIR0CXcLj+717IdX2UKGgGR0BuufIGQjlgaAdL3mgIR0CXccdBjWkKdX2UKGgGR0BwNXSpiqhlaAdL6WgIR0CXck+6Ae7udX2UKGgGR0Bv054W1twaaAdL7GgIR0CXcqa37UG3dX2UKGgGR0BxmvKOktVaaAdNAAFoCEdAl3NxZIQOF3V9lChoBkdAchSxjJ+2E2gHS/doCEdAl3Rn6MzdlHV9lChoBkdAcM9rdnCfpWgHS/toCEdAl3ewavRqoXV9lChoBkdAcehJr+Hae2gHTQgBaAhHQJd6MZ88cMp1fZQoaAZHQG8n46GQCCBoB0v7aAhHQJd6whxHXmN1fZQoaAZHQHEpaTwDvE1oB00DAWgIR0CXeusXizcAdX2UKGgGR0BxXhY1YQrdaAdNAgFoCEdAl3sdI5HVgHV9lChoBkdAcLUK3uuzQmgHTQ4BaAhHQJd7ZNet0V91fZQoaAZHQG9mAzYVZcNoB00NAmgIR0CXfXT238XOdX2UKGgGR0BxfjeUILPVaAdNHwFoCEdAl37j7Ikqt3V9lChoBkdAcJoBkqc3EWgHS+BoCEdAl38G3fAKv3V9lChoBkdAcMwHNHH3lGgHS/toCEdAl39ZDeCTU3V9lChoBkdAcVkvFm4Aj2gHTQ0BaAhHQJd/da+vhZR1fZQoaAZHQHFuBw6ySmtoB00aAWgIR0CXf7jOcDr7dX2UKGgGR0BvR9qveP7vaAdNKQFoCEdAl3/pAD7qIXV9lChoBkdAcNZ39aUzK2gHS8ZoCEdAl4A48yN4q3V9lChoBkdAYs/fdhy8z2gHTegDaAhHQJeAQtWdVed1fZQoaAZHQFFoXOGCZndoB03oA2gIR0CXgPdvbXYldX2UKGgGR0BsQkQ04zacaAdNdQJoCEdAl4KYRIz3y3V9lChoBkdAbyyDQqqfe2gHS/NoCEdAl4LEyP+4snV9lChoBkdAboyXb/Ot4mgHS+1oCEdAl4NHueBg/nV9lChoBkdAb5sSrYGt62gHS/NoCEdAl4NJwOvt+nV9lChoBkdAchxQemvW6WgHS/toCEdAl4PZNTLntHV9lChoBkdAciQR+BpYcWgHTS8BaAhHQJeE1VHWjGl1fZQoaAZHQG1bmSpzcRFoB0vtaAhHQJeFAeIVM251fZQoaAZHQHAKdV7x/d9oB0veaAhHQJeFjjKgZjx1fZQoaAZHQGySHIhhYvFoB0vlaAhHQJeF2/cnE2p1fZQoaAZHQHBHVE3Kji5oB0vhaAhHQJeGAQnQY1p1fZQoaAZHQHIRkWhysCFoB0vaaAhHQJeGNCUornV1fZQoaAZHQHBq+QhfShJoB0vsaAhHQJeGW0ojOcF1fZQoaAZHQG9Jg93bEgpoB0vfaAhHQJeGmx5cC5p1fZQoaAZHQHDZ6pkwvg5oB0vMaAhHQJeGun0kGA11fZQoaAZHQHGTK0dBBzFoB0vyaAhHQJeHAtNBWxR1fZQoaAZHQHFTlg+hXbNoB00cAWgIR0CXh6N/vv0AdX2UKGgGR0ByDKogmqo7aAdL8WgIR0CXielkpZwGdX2UKGgGR0BxaQW0qpcYaAdL5GgIR0CXijUHY6GQdX2UKGgGR0BuKUJOWSlnaAdNEQFoCEdAl4rtqk/KQ3V9lChoBkdAck1xN7BwdmgHTTMBaAhHQJeLec2BJ7N1fZQoaAZHQHItb26ClJpoB0v0aAhHQJeMs9ZA6dV1fZQoaAZHQG4N575VOsVoB00MAWgIR0CXjLLzwtrcdX2UKGgGR0Bwp0gdOqNqaAdL1WgIR0CXjPTPBzmwdX2UKGgGR0BvU+SfUWl/aAdL9mgIR0CXjUmplz2fdX2UKGgGR0Bw0bwrlNlAaAdL5GgIR0CXjagMMI/rdX2UKGgGR0BwxSnpB5X2aAdNAAFoCEdAl43kA93bEnV9lChoBkdAcMH4jKPn0WgHS+xoCEdAl45UwFkhBHV9lChoBkdAcRhI42jwhGgHS91oCEdAl46vovBacXV9lChoBkdAceNmWt2cKGgHTWMBaAhHQJeQrl3hXKd1fZQoaAZHQHF7nQhOgxtoB0vPaAhHQJeQxLEk0Jp1fZQoaAZHQHHobRjSXt1oB00IAWgIR0CXkw+HaewtdX2UKGgGR0Bw8v0Zm7J5aAdNAQFoCEdAl5RYbCJoCnV9lChoBkdAcRdnL7oB72gHTRQBaAhHQJeUcAFPi1l1fZQoaAZHQG8ZubqhUR5oB0vxaAhHQJeVD2rXDm91fZQoaAZHQHHDl6u4gA9oB0vbaAhHQJeVRoQFs551fZQoaAZHQHJf+Z1FH8VoB0v9aAhHQJeVhmJ3xF11fZQoaAZHQG/ijeCTUy5oB0vxaAhHQJeW18w5/9Z1fZQoaAZHQG/cHTI/7i1oB0v/aAhHQJeXzgrH2h91fZQoaAZHQHEgJKjBVMpoB00YAWgIR0CXl8iNbTttdX2UKGgGR0BuK3j2i+L4aAdL1WgIR0CXmGrbxmTUdX2UKGgGR0Bw2X0Dlo12aAdL92gIR0CXmaG+9Jz1dX2UKGgGR0BvSQ+nqFAWaAdL2mgIR0CXmuc9W6sidX2UKGgGR0BwkQFNcnmaaAdL3GgIR0CXnDv4ubqhdX2UKGgGR0Bx1YXj2i+MaAdL62gIR0CXnLkn1FpgdX2UKGgGR0BxjibAk9lmaAdL6WgIR0CXnZSIP9UCdX2UKGgGR0BxugDbJwKjaAdL/WgIR0CXnpcTakAQdX2UKGgGR0BruVb1RLsbaAdN+QFoCEdAl57RrN4Z/HV9lChoBkdAc1aNu+AVf2gHTRwBaAhHQJefPDfm9xp1fZQoaAZHQHBJ9ELH+61oB0vbaAhHQJefjmig00p1fZQoaAZHQHEN5x7zCk5oB0v6aAhHQJegm1RceKd1fZQoaAZHQHFeX3xnWatoB0vsaAhHQJeg0Eq2Brh1fZQoaAZHQHEGutSydFxoB0vqaAhHQJeiKRMewLV1fZQoaAZHQHEBzynUDuBoB0vwaAhHQJekQbtJFsp1fZQoaAZHQFk7Dv3JxNtoB03oA2gIR0CXpIUwztTldX2UKGgGR0BwFff/FR51aAdL7WgIR0CXpqbt7a7FdX2UKGgGR0BxieMUAT7EaAdLxWgIR0CXpyAXVLBbdX2UKGgGR0Bo58JdB0IUaAdN0wNoCEdAl6fIUJv5xnV9lChoBkdARZQldC3PRmgHS79oCEdAl6fHi3ocJnV9lChoBkdAcLWtdiUgS2gHS/9oCEdAl6ieotL+P3V9lChoBkdAcC5rULDyfGgHS+FoCEdAl6jA1ivxIHV9lChoBkdAcxixubZvk2gHTS4BaAhHQJepJXPqs2h1fZQoaAZHQHFO6sMiKSBoB0vdaAhHQJepg1k1/Dt1fZQoaAZHQHDrx2W6bvxoB0vWaAhHQJequoP07Kd1fZQoaAZHQGRE2xY7q6hoB03oA2gIR0CXqrkt29tedX2UKGgGR0ByhvGS6lLwaAdNEAFoCEdAl68y7PIGQnV9lChoBkdAceEdAPd2xWgHS/BoCEdAl7ABXKbKBHV9lChoBkdAcCvU7jkuH2gHS9NoCEdAl7HW0zCUHXV9lChoBkdAcMRm03Ov+2gHS/RoCEdAl7Lg8fV7QnV9lChoBkdAcQkZ/kNnXmgHS/5oCEdAl7Lt/z8P4HV9lChoBkdAcdYtWdVebGgHTTcBaAhHQJezdew9q1x1fZQoaAZHQHBJkEC/47BoB0vvaAhHQJe0XH6uW8h1fZQoaAZHQG2UGWUr08NoB00BAWgIR0CXtciXIEKWdX2UKGgGR0BwEkNnXd0raAdL3WgIR0CXteSwW3z+dX2UKGgGR0By6nW6K+BZaAdL5WgIR0CXtkOARTS9dX2UKGgGR0BXKVsk6cRUaAdN6ANoCEdAl7ZsTJyQxXV9lChoBkdAcDCFBppN9GgHTTABaAhHQJe2lXlr/Kh1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2beaf347748b7d8eebec5060444d46eb6268f7b535632dfecd5079bd98758b80
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed870e60ebd8faa4dd54036d081563865c65fafbd4ec141c3a9c2145bb2e5ad3
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.12246640000004, "std_reward": 38.13633249525665, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-10T00:22:35.746696"}