Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. 09/17/2024 17:17:16 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False 09/17/2024 17:17:16 - INFO - __main__ - Training/evaluation parameters DistillationTrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, batch_eval_metrics=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=8, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=7200, debug=[], deepspeed=None, disable_tqdm=False, dispatch_batches=None, do_eval=True, do_predict=False, do_train=True, dtype=bfloat16, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=1000.0, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_encoder=True, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, kl_weight=1.0, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=./runs/Sep17_17-17-13_22c57e4734ce, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=25, logging_strategy=steps, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=5000, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=./, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=32, per_device_train_batch_size=32, predict_with_generate=True, prediction_loss_only=False, push_to_hub=True, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ray_scope=last, remove_unused_columns=True, report_to=['tensorboard'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=./, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=None, temperature=2.0, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=50, weight_decay=0.0, ) /root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'Repository' (from 'huggingface_hub.repository') is deprecated and will be removed from version '1.0'. Please prefer the http-based alternatives instead. Given its large adoption in legacy code, the complete removal is only planned on next major release. For more details, please read https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http. warnings.warn(warning_message, FutureWarning) /root/distil-whisper-large-v3-ptbr/./ is already a clone of https://huggingface.co/freds0/distil-whisper-large-v3-ptbr. Make sure you pull the latest changes with `repo.git_pull()`. 09/17/2024 17:17:17 - WARNING - huggingface_hub.repository - /root/distil-whisper-large-v3-ptbr/./ is already a clone of https://huggingface.co/freds0/distil-whisper-large-v3-ptbr. Make sure you pull the latest changes with `repo.git_pull()`. Combining datasets...: 0%| | 0/2 [00:00 main() File "/root/distil-whisper-large-v3-ptbr/run_distillation.py", line 799, in main raw_datasets["train"] = load_multiple_datasets( File "/root/distil-whisper-large-v3-ptbr/run_distillation.py", line 594, in load_multiple_datasets dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate)) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/datasets/fingerprint.py", line 442, in wrapper out = func(dataset, *args, **kwargs) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2096, in cast_column dataset._data = dataset._data.cast(dataset.features.arrow_schema) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/datasets/table.py", line 1577, in cast table = table_cast(self.table, target_schema, *args, **kwargs) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/datasets/table.py", line 2283, in table_cast return cast_table_to_schema(table, schema) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/datasets/table.py", line 2237, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast filename: struct child 0, bytes: binary child 1, path: string duration: double transcript: string transcript_mms: string levenshtein: double client_id: int64 filesize: int64 num_words: int64 -- schema metadata -- huggingface: '{"info": {"features": {"filename": {"sampling_rate": 24000,' + 390 to {'filename': Audio(sampling_rate=24000, mono=True, decode=True, id=None), 'duration': Value(dtype='float64', id=None), 'transcript': Value(dtype='string', id=None), 'transcript_mms': Value(dtype='string', id=None), 'levenshtein': Value(dtype='float64', id=None), 'client_id': Value(dtype='int64', id=None), 'filesize': Value(dtype='int64', id=None), 'num_words': Value(dtype='int64', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None)} because column names don't match Traceback (most recent call last): File "/root/anaconda/envs/distil-whisper/bin/accelerate", line 8, in sys.exit(main()) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/accelerate/commands/accelerate_cli.py", line 48, in main args.func(args) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/accelerate/commands/launch.py", line 1174, in launch_command simple_launcher(args) File "/root/anaconda/envs/distil-whisper/lib/python3.9/site-packages/accelerate/commands/launch.py", line 769, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['/root/anaconda/envs/distil-whisper/bin/python', 'run_distillation.py', '--model_name_or_path', './distil-large-v3-init', '--teacher_model_name_or_path', 'openai/whisper-large-v3', '--train_dataset_name', 'freds0/cml_tts_dataset_portuguese+freds0/cml_tts_dataset_portuguese', '--train_split_name', 'train+test', '--train_dataset_config_name', 'default+default', '--text_column_name', 'transcript+transcript', '--eval_dataset_name', 'freds0/cml_tts_dataset_portuguese', '--eval_text_column_name', 'transcript', '--eval_steps', '1000', '--save_steps', '1000', '--warmup_steps', '50', '--learning_rate', '0.0001', '--lr_scheduler_type', 'constant_with_warmup', '--timestamp_probability', '0.2', '--condition_on_prev_probability', '0.2', '--language', 'pl', '--task', 'transcribe', '--logging_steps', '25', '--save_total_limit', '1', '--max_steps', '5000', '--wer_threshold', '20', '--per_device_train_batch_size', '32', '--per_device_eval_batch_size', '32', '--dataloader_num_workers', '8', '--preprocessing_num_workers', '8', '--ddp_timeout', '7200', '--dtype', 'bfloat16', '--output_dir', './', '--do_train', '--do_eval', '--gradient_checkpointing', '--overwrite_output_dir', '--predict_with_generate', '--freeze_encoder', '--streaming', 'False', '--push_to_hub']' returned non-zero exit status 1.