File size: 2,970 Bytes
9f2b2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
- image-classification
- pytorch
- onnx
datasets:
- frgfm/imagenette
---


# ReXNet-1.0x model

Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf).


## Model description

The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.


## Installation

### Prerequisites

Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.

### Latest stable release

You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:

```shell
pip install pylocron
```

or using [conda](https://anaconda.org/frgfm/pylocron):

```shell
conda install -c frgfm pylocron
```

### Developer mode

Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:

```shell
git clone https://github.com/frgfm/Holocron.git
pip install -e Holocron/.
```


## Usage instructions

```python
from PIL import Image
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
from torchvision.transforms.functional import InterpolationMode
from holocron.models import model_from_hf_hub

model = model_from_hf_hub("frgfm/rexnet1_0x").eval()

img = Image.open(path_to_an_image).convert("RGB")

# Preprocessing
config = model.default_cfg
transform = Compose([
    Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
    PILToTensor(),
    ConvertImageDtype(torch.float32),
    Normalize(config['mean'], config['std'])
])

input_tensor = transform(img).unsqueeze(0)

# Inference
with torch.inference_mode():
    output = model(input_tensor)
probs = output.squeeze(0).softmax(dim=0)
```


## Citation

Original paper

```bibtex
@article{DBLP:journals/corr/abs-2007-00992,
  author    = {Dongyoon Han and
               Sangdoo Yun and
               Byeongho Heo and
               Young Joon Yoo},
  title     = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural
               Network},
  journal   = {CoRR},
  volume    = {abs/2007.00992},
  year      = {2020},
  url       = {https://arxiv.org/abs/2007.00992},
  eprinttype = {arXiv},
  eprint    = {2007.00992},
  timestamp = {Mon, 06 Jul 2020 15:26:01 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

Source of this implementation

```bibtex
@software{Fernandez_Holocron_2020,
author = {Fernandez, François-Guillaume},
month = {5},
title = {{Holocron}},
url = {https://github.com/frgfm/Holocron},
year = {2020}
}
```