frogfrog commited on
Commit
c540079
1 Parent(s): 0eeb085
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -177.86 +/- 61.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7c05cac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7c05caca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7c05cad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7c05cadc0>", "_build": "<function ActorCriticPolicy._build at 0x7fb7c05cae50>", "forward": "<function ActorCriticPolicy.forward at 0x7fb7c05caee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb7c05caf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7c05ce040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb7c05ce0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7c05ce160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7c05ce1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7c05ce280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb7c05cbec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678422218015751509, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb+J7zdH0U+tBALvzkCVr+EuLA+jYRivgAAAAAAAAAAbTNBvgOEoD+78+C+a/oBv0uNyD2tvuQ6AAAAAAAAAADm5So+wNLUPlxsjz7m+i6/Q05DvWhsZT4AAAAAAAAAAFNKAb4pP3M/8fgPvrcbXb9nbZe9EgMTvQAAAAAAAAAACnm9PiHbOb2yIaK8axMJO4Ayv7wWf1U9AACAPwAAgD8ArhS9iVAEPgbNJT5+QIm/k7dCvg9NrT0AAAAAAAAAAM1YY7zQM7U//LOuvuu0UDxnH108I7v5PAAAAAAAAAAAgKQSvelBtz+kl6q+I3FBvCotxDvAoNm9AAAAAAAAAAD6eTA+/8pvP3Tslz7OCRa/CUtNPcMRpD0AAAAAAAAAAHPavj2kJ5I/a82YPl8vIr/qZxE+Ve47PgAAAAAAAAAAZlO3PLuirj/Gsg8/Ol0Hv7MOrry1jZC9AAAAAAAAAAClPJK+6ByDP/xCPb/MOjC/Q+MZvj7PoL4AAAAAAAAAAHNt5z06wLA/drmdPpMrQL5eknU9SKZJPQAAAAAAAAAAmpXHO2jiwD/5Das8skqnPdBvxLzgYF47AAAAAAAAAADtQyA/yrdSPs1Eij6wXYq/CEekPkbh5b0AAAAAAAAAAArjob6qu1Y+e5jvvfQYTb8rE+e8ppFaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHjS77q3lWcCUhpRSlIwBbJRLgIwBdJRHQGWX+HBUJfJ1fZQoaAZoCWgPQwhG6j2V05BYwJSGlFKUaBVLomgWR0BlmpO1v2oOdX2UKGgGaAloD0MIVU57Ss7VS8CUhpRSlGgVS3RoFkdAZZqWE9Mbm3V9lChoBmgJaA9DCFWFBmLZbAbAlIaUUpRoFUt8aBZHQGWe2St/4It1fZQoaAZoCWgPQwhMNEjBU/grwJSGlFKUaBVLjGgWR0Bln1VR1oxpdX2UKGgGaAloD0MInu3RG+4oU8CUhpRSlGgVS1doFkdAZaBi3ocJdHV9lChoBmgJaA9DCPiKbr2mkz3AlIaUUpRoFUuAaBZHQGWh8mBvrGB1fZQoaAZoCWgPQwgaNV8lH4lJwJSGlFKUaBVLeWgWR0Blpee18b71dX2UKGgGaAloD0MI7C5QUmAVRsCUhpRSlGgVS3hoFkdAZaXgDzRQanV9lChoBmgJaA9DCDWZ8bbSbVDAlIaUUpRoFUtqaBZHQGWnr2YfGMp1fZQoaAZoCWgPQwhSt7OvPMgwwJSGlFKUaBVLTWgWR0BlqKzNUwSKdX2UKGgGaAloD0MIQ1iNJaybScCUhpRSlGgVS2poFkdAZanu2qkuYnV9lChoBmgJaA9DCBdi9UcYfi/AlIaUUpRoFUtSaBZHQGWqT6BRQ791fZQoaAZoCWgPQwgZ5ZmXw6BHwJSGlFKUaBVLbWgWR0Blrih6By0bdX2UKGgGaAloD0MIuAIK9fTpIkCUhpRSlGgVS3ZoFkdAZa5oL5RCQnV9lChoBmgJaA9DCNTuVwG+zVXAlIaUUpRoFUuDaBZHQGWuo0IkZ751fZQoaAZoCWgPQwiESlzHuLo9wJSGlFKUaBVLeGgWR0BltUOZssQNdX2UKGgGaAloD0MIpFGBk21iYMCUhpRSlGgVS31oFkdAZbZm8M/hVHV9lChoBmgJaA9DCJZbWg2JklfAlIaUUpRoFUtoaBZHQGW2tJnQID51fZQoaAZoCWgPQwizlZf8T9Y+wJSGlFKUaBVLXWgWR0BltusPrfLtdX2UKGgGaAloD0MIpTDvcaZFScCUhpRSlGgVS35oFkdAZbsU47zTW3V9lChoBmgJaA9DCIicvp6v71jAlIaUUpRoFUtVaBZHQGW7Vkc0cfh1fZQoaAZoCWgPQwgAcy1agMpOwJSGlFKUaBVLXmgWR0BlvGJgssg/dX2UKGgGaAloD0MIiUUMO4zYWcCUhpRSlGgVS2ZoFkdAZbxnTRYzSHV9lChoBmgJaA9DCLSULCehM1TAlIaUUpRoFUtfaBZHQGW+7zK9wm51fZQoaAZoCWgPQwgFUfcBSEUjQJSGlFKUaBVLd2gWR0BlwEYMvyskdX2UKGgGaAloD0MIs874vrgeR8CUhpRSlGgVS5toFkdAZcNIVdonKHV9lChoBmgJaA9DCHnr/NtlQ1XAlIaUUpRoFUt8aBZHQGXF+eOGTLZ1fZQoaAZoCWgPQwgz+zxGeZVXwJSGlFKUaBVLa2gWR0BlxoRwqAjIdX2UKGgGaAloD0MIsaNxqN/xT8CUhpRSlGgVS3poFkdAZcmN+b3GoHV9lChoBmgJaA9DCGO4OgDiikTAlIaUUpRoFUt6aBZHQGXJzl1bJOp1fZQoaAZoCWgPQwgP0egOYv5SwJSGlFKUaBVLWmgWR0BlydNlAeJYdX2UKGgGaAloD0MIfAxWnGrjTsCUhpRSlGgVS1ZoFkdAZcoJZ4fOlnV9lChoBmgJaA9DCFor2hznRjDAlIaUUpRoFUtWaBZHQGXKfqxC6Yp1fZQoaAZoCWgPQwg+d4L917dKwJSGlFKUaBVLTGgWR0BlzI3WFvhqdX2UKGgGaAloD0MIck2BzM43VcCUhpRSlGgVS2toFkdAZc6eGO+7DnV9lChoBmgJaA9DCJEotKz7azPAlIaUUpRoFUtaaBZHQGXTJxNqQBB1fZQoaAZoCWgPQwjf4AuTqTRJwJSGlFKUaBVLeGgWR0Bl1hhWo3rEdX2UKGgGaAloD0MIEeD0Lt43NsCUhpRSlGgVS0poFkdAZdaKWszVMHV9lChoBmgJaA9DCA+3Q8NiVEXAlIaUUpRoFUtBaBZHQGXYSBshxHZ1fZQoaAZoCWgPQwjIQnQIHKlFwJSGlFKUaBVLbGgWR0Bl2MP8Q7LddX2UKGgGaAloD0MIG53zUxzzQsCUhpRSlGgVS4BoFkdAZdlpSrHU+nV9lChoBmgJaA9DCMPwETElNjLAlIaUUpRoFUuDaBZHQGXaEWykbgl1fZQoaAZoCWgPQwgV/3dEhRxIwJSGlFKUaBVLWWgWR0Bl2pt52QnydX2UKGgGaAloD0MII6Et51LCT8CUhpRSlGgVS1loFkdAZd3YywfQr3V9lChoBmgJaA9DCF6FlJ9UVVDAlIaUUpRoFUtbaBZHQGXeGkep4r11fZQoaAZoCWgPQwgnbD8Z47M4wJSGlFKUaBVLd2gWR0Bl3hw84giedX2UKGgGaAloD0MI3Xh3ZKzORMCUhpRSlGgVS1poFkdAZd6LmZE2HnV9lChoBmgJaA9DCJOOcjCbXkjAlIaUUpRoFUtzaBZHQGXjCSzPa+N1fZQoaAZoCWgPQwg2BMdl3CpWwJSGlFKUaBVLXWgWR0Bl6DqrzXjEdX2UKGgGaAloD0MIhbAaS1jvQ8CUhpRSlGgVS3NoFkdAZejAtWdVenV9lChoBmgJaA9DCD9ya9Jte1HAlIaUUpRoFUtQaBZHQGXq7L2YfGN1fZQoaAZoCWgPQwh5eM+B5cFbwJSGlFKUaBVLV2gWR0Bl68OEug6EdX2UKGgGaAloD0MI2cwhqYW8TsCUhpRSlGgVS4xoFkdAZev0r9VFQXV9lChoBmgJaA9DCDUMHxFTDkHAlIaUUpRoFUtfaBZHQGXr3QMQVbl1fZQoaAZoCWgPQwibPdAKDBdLwJSGlFKUaBVLc2gWR0Bl7nJ5mh/RdX2UKGgGaAloD0MIOlrVko5OU8CUhpRSlGgVS1loFkdAZe/EZzgdfnV9lChoBmgJaA9DCGuad5yiz0HAlIaUUpRoFUtdaBZHQGXwhMSK3ux1fZQoaAZoCWgPQwiZZyWt+HRLwJSGlFKUaBVLb2gWR0Bl8H4AS39adX2UKGgGaAloD0MIvd9oxw2pScCUhpRSlGgVS29oFkdAZfOiliz9j3V9lChoBmgJaA9DCOXQItv5fFXAlIaUUpRoFUtwaBZHQGX0RtYSxqx1fZQoaAZoCWgPQwj1gHnIlN1HwJSGlFKUaBVLg2gWR0Bl9HFkxyn2dX2UKGgGaAloD0MIUInrGFdsUcCUhpRSlGgVS5BoFkdAZfVtqpLmIXV9lChoBmgJaA9DCPjgtUsbMVDAlIaUUpRoFUtmaBZHQGX5SGSIP9V1fZQoaAZoCWgPQwjrxVBOtD80QJSGlFKUaBVLhGgWR0Bl+jX4CZF5dX2UKGgGaAloD0MIVHQkl/8IVMCUhpRSlGgVS3ZoFkdAZftnjABT43V9lChoBmgJaA9DCO4m+KbpFUnAlIaUUpRoFUtoaBZHQGX75AhStNl1fZQoaAZoCWgPQwjyQc9m1aFIwJSGlFKUaBVLemgWR0Bl/aUA1ejVdX2UKGgGaAloD0MINWCQ9GlTSsCUhpRSlGgVS3hoFkdAZf4cKgIyCXV9lChoBmgJaA9DCBdJu9HHkFDAlIaUUpRoFUt4aBZHQGX+LeqJdjZ1fZQoaAZoCWgPQwh+Uu3T8bpTwJSGlFKUaBVLaGgWR0Bl/9S2phnbdX2UKGgGaAloD0MIlWBxOPM5UcCUhpRSlGgVS15oFkdAZgFfCyhSL3V9lChoBmgJaA9DCG4WLxaGLEnAlIaUUpRoFUtyaBZHQGYByxZ+x4Z1fZQoaAZoCWgPQwhyGTc10D5IwJSGlFKUaBVLWGgWR0BmAl9lVcUudX2UKGgGaAloD0MIGsIxy54oRcCUhpRSlGgVS3doFkdAZgKWmgrYoXV9lChoBmgJaA9DCJzbhHtlPlXAlIaUUpRoFUtsaBZHQGYD+mWMS9N1fZQoaAZoCWgPQwjIluXrMnxRwJSGlFKUaBVLlmgWR0BmBSMDOkckdX2UKGgGaAloD0MIG4LjMm4CVMCUhpRSlGgVS3poFkdAZgYX668QI3V9lChoBmgJaA9DCMh8QKAzjUXAlIaUUpRoFUtZaBZHQGYGSXD3ueB1fZQoaAZoCWgPQwia6zTSUgVAwJSGlFKUaBVLXGgWR0BmC4Et/WlNdX2UKGgGaAloD0MIRS44g7/vKcCUhpRSlGgVS4FoFkdAZg59Cu2ZzHV9lChoBmgJaA9DCGEZG7rZA07AlIaUUpRoFUtTaBZHQGYPAGB4D9x1fZQoaAZoCWgPQwidK0oJwRhDwJSGlFKUaBVLXGgWR0BmDyi/O+qSdX2UKGgGaAloD0MIqRPQRNiSQsCUhpRSlGgVS3xoFkdAZhAmCyyD7XV9lChoBmgJaA9DCIeKcf4mHkPAlIaUUpRoFUtbaBZHQGYQDzZpSJl1fZQoaAZoCWgPQwjkFYielEFHwJSGlFKUaBVLlGgWR0BmEFObiIcjdX2UKGgGaAloD0MI7l2DvvTpVMCUhpRSlGgVS3loFkdAZhBBBzFMqXV9lChoBmgJaA9DCGdiuhCrpUrAlIaUUpRoFUtlaBZHQGYQ9c0Ltu11fZQoaAZoCWgPQwhEozuInXU9wJSGlFKUaBVLj2gWR0BmEURe1KGtdX2UKGgGaAloD0MIVi3pKAfDOsCUhpRSlGgVS1poFkdAZhGgFHJ9zHV9lChoBmgJaA9DCEPJ5NTOBkXAlIaUUpRoFUtsaBZHQGYVL4vexfR1fZQoaAZoCWgPQwjxLawb7+I6wJSGlFKUaBVLm2gWR0BmFpjlPrOadX2UKGgGaAloD0MIcEIhAg6fScCUhpRSlGgVS3hoFkdAZhgnCO3lS3V9lChoBmgJaA9DCBQ/xty1pFjAlIaUUpRoFUtGaBZHQGYZTQeFL391fZQoaAZoCWgPQwhCfGDHf09CwJSGlFKUaBVLSWgWR0BmGZ+QU5+6dX2UKGgGaAloD0MI9Kj4vyN0TsCUhpRSlGgVS41oFkdAZhsR7JGOMnV9lChoBmgJaA9DCB050hkYpFPAlIaUUpRoFUtTaBZHQGYcNHxz7uV1fZQoaAZoCWgPQwiaJQFqamRWwJSGlFKUaBVLZmgWR0BmHXhZQpF1dX2UKGgGaAloD0MI3IKluoB1RMCUhpRSlGgVS2FoFkdAZh5oX9BKMHV9lChoBmgJaA9DCPci2o6p71HAlIaUUpRoFUtYaBZHQGYeY0uUUwl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a2504da244ecc6c11f96ec5c51d2b2bf523409004c582aa287d06253f9c2f0
3
+ size 147292
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7c05cac10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7c05caca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7c05cad30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7c05cadc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb7c05cae50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb7c05caee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb7c05caf70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7c05ce040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb7c05ce0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7c05ce160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7c05ce1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7c05ce280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb7c05cbec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 114688,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678422218015751509,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb+J7zdH0U+tBALvzkCVr+EuLA+jYRivgAAAAAAAAAAbTNBvgOEoD+78+C+a/oBv0uNyD2tvuQ6AAAAAAAAAADm5So+wNLUPlxsjz7m+i6/Q05DvWhsZT4AAAAAAAAAAFNKAb4pP3M/8fgPvrcbXb9nbZe9EgMTvQAAAAAAAAAACnm9PiHbOb2yIaK8axMJO4Ayv7wWf1U9AACAPwAAgD8ArhS9iVAEPgbNJT5+QIm/k7dCvg9NrT0AAAAAAAAAAM1YY7zQM7U//LOuvuu0UDxnH108I7v5PAAAAAAAAAAAgKQSvelBtz+kl6q+I3FBvCotxDvAoNm9AAAAAAAAAAD6eTA+/8pvP3Tslz7OCRa/CUtNPcMRpD0AAAAAAAAAAHPavj2kJ5I/a82YPl8vIr/qZxE+Ve47PgAAAAAAAAAAZlO3PLuirj/Gsg8/Ol0Hv7MOrry1jZC9AAAAAAAAAAClPJK+6ByDP/xCPb/MOjC/Q+MZvj7PoL4AAAAAAAAAAHNt5z06wLA/drmdPpMrQL5eknU9SKZJPQAAAAAAAAAAmpXHO2jiwD/5Das8skqnPdBvxLzgYF47AAAAAAAAAADtQyA/yrdSPs1Eij6wXYq/CEekPkbh5b0AAAAAAAAAAArjob6qu1Y+e5jvvfQYTb8rE+e8ppFaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.1468799999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHjS77q3lWcCUhpRSlIwBbJRLgIwBdJRHQGWX+HBUJfJ1fZQoaAZoCWgPQwhG6j2V05BYwJSGlFKUaBVLomgWR0BlmpO1v2oOdX2UKGgGaAloD0MIVU57Ss7VS8CUhpRSlGgVS3RoFkdAZZqWE9Mbm3V9lChoBmgJaA9DCFWFBmLZbAbAlIaUUpRoFUt8aBZHQGWe2St/4It1fZQoaAZoCWgPQwhMNEjBU/grwJSGlFKUaBVLjGgWR0Bln1VR1oxpdX2UKGgGaAloD0MInu3RG+4oU8CUhpRSlGgVS1doFkdAZaBi3ocJdHV9lChoBmgJaA9DCPiKbr2mkz3AlIaUUpRoFUuAaBZHQGWh8mBvrGB1fZQoaAZoCWgPQwgaNV8lH4lJwJSGlFKUaBVLeWgWR0Blpee18b71dX2UKGgGaAloD0MI7C5QUmAVRsCUhpRSlGgVS3hoFkdAZaXgDzRQanV9lChoBmgJaA9DCDWZ8bbSbVDAlIaUUpRoFUtqaBZHQGWnr2YfGMp1fZQoaAZoCWgPQwhSt7OvPMgwwJSGlFKUaBVLTWgWR0BlqKzNUwSKdX2UKGgGaAloD0MIQ1iNJaybScCUhpRSlGgVS2poFkdAZanu2qkuYnV9lChoBmgJaA9DCBdi9UcYfi/AlIaUUpRoFUtSaBZHQGWqT6BRQ791fZQoaAZoCWgPQwgZ5ZmXw6BHwJSGlFKUaBVLbWgWR0Blrih6By0bdX2UKGgGaAloD0MIuAIK9fTpIkCUhpRSlGgVS3ZoFkdAZa5oL5RCQnV9lChoBmgJaA9DCNTuVwG+zVXAlIaUUpRoFUuDaBZHQGWuo0IkZ751fZQoaAZoCWgPQwiESlzHuLo9wJSGlFKUaBVLeGgWR0BltUOZssQNdX2UKGgGaAloD0MIpFGBk21iYMCUhpRSlGgVS31oFkdAZbZm8M/hVHV9lChoBmgJaA9DCJZbWg2JklfAlIaUUpRoFUtoaBZHQGW2tJnQID51fZQoaAZoCWgPQwizlZf8T9Y+wJSGlFKUaBVLXWgWR0BltusPrfLtdX2UKGgGaAloD0MIpTDvcaZFScCUhpRSlGgVS35oFkdAZbsU47zTW3V9lChoBmgJaA9DCIicvp6v71jAlIaUUpRoFUtVaBZHQGW7Vkc0cfh1fZQoaAZoCWgPQwgAcy1agMpOwJSGlFKUaBVLXmgWR0BlvGJgssg/dX2UKGgGaAloD0MIiUUMO4zYWcCUhpRSlGgVS2ZoFkdAZbxnTRYzSHV9lChoBmgJaA9DCLSULCehM1TAlIaUUpRoFUtfaBZHQGW+7zK9wm51fZQoaAZoCWgPQwgFUfcBSEUjQJSGlFKUaBVLd2gWR0BlwEYMvyskdX2UKGgGaAloD0MIs874vrgeR8CUhpRSlGgVS5toFkdAZcNIVdonKHV9lChoBmgJaA9DCHnr/NtlQ1XAlIaUUpRoFUt8aBZHQGXF+eOGTLZ1fZQoaAZoCWgPQwgz+zxGeZVXwJSGlFKUaBVLa2gWR0BlxoRwqAjIdX2UKGgGaAloD0MIsaNxqN/xT8CUhpRSlGgVS3poFkdAZcmN+b3GoHV9lChoBmgJaA9DCGO4OgDiikTAlIaUUpRoFUt6aBZHQGXJzl1bJOp1fZQoaAZoCWgPQwgP0egOYv5SwJSGlFKUaBVLWmgWR0BlydNlAeJYdX2UKGgGaAloD0MIfAxWnGrjTsCUhpRSlGgVS1ZoFkdAZcoJZ4fOlnV9lChoBmgJaA9DCFor2hznRjDAlIaUUpRoFUtWaBZHQGXKfqxC6Yp1fZQoaAZoCWgPQwg+d4L917dKwJSGlFKUaBVLTGgWR0BlzI3WFvhqdX2UKGgGaAloD0MIck2BzM43VcCUhpRSlGgVS2toFkdAZc6eGO+7DnV9lChoBmgJaA9DCJEotKz7azPAlIaUUpRoFUtaaBZHQGXTJxNqQBB1fZQoaAZoCWgPQwjf4AuTqTRJwJSGlFKUaBVLeGgWR0Bl1hhWo3rEdX2UKGgGaAloD0MIEeD0Lt43NsCUhpRSlGgVS0poFkdAZdaKWszVMHV9lChoBmgJaA9DCA+3Q8NiVEXAlIaUUpRoFUtBaBZHQGXYSBshxHZ1fZQoaAZoCWgPQwjIQnQIHKlFwJSGlFKUaBVLbGgWR0Bl2MP8Q7LddX2UKGgGaAloD0MIG53zUxzzQsCUhpRSlGgVS4BoFkdAZdlpSrHU+nV9lChoBmgJaA9DCMPwETElNjLAlIaUUpRoFUuDaBZHQGXaEWykbgl1fZQoaAZoCWgPQwgV/3dEhRxIwJSGlFKUaBVLWWgWR0Bl2pt52QnydX2UKGgGaAloD0MII6Et51LCT8CUhpRSlGgVS1loFkdAZd3YywfQr3V9lChoBmgJaA9DCF6FlJ9UVVDAlIaUUpRoFUtbaBZHQGXeGkep4r11fZQoaAZoCWgPQwgnbD8Z47M4wJSGlFKUaBVLd2gWR0Bl3hw84giedX2UKGgGaAloD0MI3Xh3ZKzORMCUhpRSlGgVS1poFkdAZd6LmZE2HnV9lChoBmgJaA9DCJOOcjCbXkjAlIaUUpRoFUtzaBZHQGXjCSzPa+N1fZQoaAZoCWgPQwg2BMdl3CpWwJSGlFKUaBVLXWgWR0Bl6DqrzXjEdX2UKGgGaAloD0MIhbAaS1jvQ8CUhpRSlGgVS3NoFkdAZejAtWdVenV9lChoBmgJaA9DCD9ya9Jte1HAlIaUUpRoFUtQaBZHQGXq7L2YfGN1fZQoaAZoCWgPQwh5eM+B5cFbwJSGlFKUaBVLV2gWR0Bl68OEug6EdX2UKGgGaAloD0MI2cwhqYW8TsCUhpRSlGgVS4xoFkdAZev0r9VFQXV9lChoBmgJaA9DCDUMHxFTDkHAlIaUUpRoFUtfaBZHQGXr3QMQVbl1fZQoaAZoCWgPQwibPdAKDBdLwJSGlFKUaBVLc2gWR0Bl7nJ5mh/RdX2UKGgGaAloD0MIOlrVko5OU8CUhpRSlGgVS1loFkdAZe/EZzgdfnV9lChoBmgJaA9DCGuad5yiz0HAlIaUUpRoFUtdaBZHQGXwhMSK3ux1fZQoaAZoCWgPQwiZZyWt+HRLwJSGlFKUaBVLb2gWR0Bl8H4AS39adX2UKGgGaAloD0MIvd9oxw2pScCUhpRSlGgVS29oFkdAZfOiliz9j3V9lChoBmgJaA9DCOXQItv5fFXAlIaUUpRoFUtwaBZHQGX0RtYSxqx1fZQoaAZoCWgPQwj1gHnIlN1HwJSGlFKUaBVLg2gWR0Bl9HFkxyn2dX2UKGgGaAloD0MIUInrGFdsUcCUhpRSlGgVS5BoFkdAZfVtqpLmIXV9lChoBmgJaA9DCPjgtUsbMVDAlIaUUpRoFUtmaBZHQGX5SGSIP9V1fZQoaAZoCWgPQwjrxVBOtD80QJSGlFKUaBVLhGgWR0Bl+jX4CZF5dX2UKGgGaAloD0MIVHQkl/8IVMCUhpRSlGgVS3ZoFkdAZftnjABT43V9lChoBmgJaA9DCO4m+KbpFUnAlIaUUpRoFUtoaBZHQGX75AhStNl1fZQoaAZoCWgPQwjyQc9m1aFIwJSGlFKUaBVLemgWR0Bl/aUA1ejVdX2UKGgGaAloD0MINWCQ9GlTSsCUhpRSlGgVS3hoFkdAZf4cKgIyCXV9lChoBmgJaA9DCBdJu9HHkFDAlIaUUpRoFUt4aBZHQGX+LeqJdjZ1fZQoaAZoCWgPQwh+Uu3T8bpTwJSGlFKUaBVLaGgWR0Bl/9S2phnbdX2UKGgGaAloD0MIlWBxOPM5UcCUhpRSlGgVS15oFkdAZgFfCyhSL3V9lChoBmgJaA9DCG4WLxaGLEnAlIaUUpRoFUtyaBZHQGYByxZ+x4Z1fZQoaAZoCWgPQwhyGTc10D5IwJSGlFKUaBVLWGgWR0BmAl9lVcUudX2UKGgGaAloD0MIGsIxy54oRcCUhpRSlGgVS3doFkdAZgKWmgrYoXV9lChoBmgJaA9DCJzbhHtlPlXAlIaUUpRoFUtsaBZHQGYD+mWMS9N1fZQoaAZoCWgPQwjIluXrMnxRwJSGlFKUaBVLlmgWR0BmBSMDOkckdX2UKGgGaAloD0MIG4LjMm4CVMCUhpRSlGgVS3poFkdAZgYX668QI3V9lChoBmgJaA9DCMh8QKAzjUXAlIaUUpRoFUtZaBZHQGYGSXD3ueB1fZQoaAZoCWgPQwia6zTSUgVAwJSGlFKUaBVLXGgWR0BmC4Et/WlNdX2UKGgGaAloD0MIRS44g7/vKcCUhpRSlGgVS4FoFkdAZg59Cu2ZzHV9lChoBmgJaA9DCGEZG7rZA07AlIaUUpRoFUtTaBZHQGYPAGB4D9x1fZQoaAZoCWgPQwidK0oJwRhDwJSGlFKUaBVLXGgWR0BmDyi/O+qSdX2UKGgGaAloD0MIqRPQRNiSQsCUhpRSlGgVS3xoFkdAZhAmCyyD7XV9lChoBmgJaA9DCIeKcf4mHkPAlIaUUpRoFUtbaBZHQGYQDzZpSJl1fZQoaAZoCWgPQwjkFYielEFHwJSGlFKUaBVLlGgWR0BmEFObiIcjdX2UKGgGaAloD0MI7l2DvvTpVMCUhpRSlGgVS3loFkdAZhBBBzFMqXV9lChoBmgJaA9DCGdiuhCrpUrAlIaUUpRoFUtlaBZHQGYQ9c0Ltu11fZQoaAZoCWgPQwhEozuInXU9wJSGlFKUaBVLj2gWR0BmEURe1KGtdX2UKGgGaAloD0MIVi3pKAfDOsCUhpRSlGgVS1poFkdAZhGgFHJ9zHV9lChoBmgJaA9DCEPJ5NTOBkXAlIaUUpRoFUtsaBZHQGYVL4vexfR1fZQoaAZoCWgPQwjxLawb7+I6wJSGlFKUaBVLm2gWR0BmFpjlPrOadX2UKGgGaAloD0MIcEIhAg6fScCUhpRSlGgVS3hoFkdAZhgnCO3lS3V9lChoBmgJaA9DCBQ/xty1pFjAlIaUUpRoFUtGaBZHQGYZTQeFL391fZQoaAZoCWgPQwhCfGDHf09CwJSGlFKUaBVLSWgWR0BmGZ+QU5+6dX2UKGgGaAloD0MI9Kj4vyN0TsCUhpRSlGgVS41oFkdAZhsR7JGOMnV9lChoBmgJaA9DCB050hkYpFPAlIaUUpRoFUtTaBZHQGYcNHxz7uV1fZQoaAZoCWgPQwiaJQFqamRWwJSGlFKUaBVLZmgWR0BmHXhZQpF1dX2UKGgGaAloD0MI3IKluoB1RMCUhpRSlGgVS2FoFkdAZh5oX9BKMHV9lChoBmgJaA9DCPci2o6p71HAlIaUUpRoFUtYaBZHQGYeY0uUUwl1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 32,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:303c29cd418b214d39efea0e05b0148ce7e53ae04f53a88ffec148e2766b5715
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:678123141c4b7e74fcfe10bfbd02ec76c3406e53a22c9b0a5b88e528ecb519c4
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (279 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -177.86286766835255, "std_reward": 61.419595327481446, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T05:42:09.414971"}