- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -177.86 +/- 61.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7c05cac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7c05caca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7c05cad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7c05cadc0>", "_build": "<function ActorCriticPolicy._build at 0x7fb7c05cae50>", "forward": "<function ActorCriticPolicy.forward at 0x7fb7c05caee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb7c05caf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7c05ce040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb7c05ce0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7c05ce160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7c05ce1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7c05ce280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb7c05cbec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678422218015751509, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb+J7zdH0U+tBALvzkCVr+EuLA+jYRivgAAAAAAAAAAbTNBvgOEoD+78+C+a/oBv0uNyD2tvuQ6AAAAAAAAAADm5So+wNLUPlxsjz7m+i6/Q05DvWhsZT4AAAAAAAAAAFNKAb4pP3M/8fgPvrcbXb9nbZe9EgMTvQAAAAAAAAAACnm9PiHbOb2yIaK8axMJO4Ayv7wWf1U9AACAPwAAgD8ArhS9iVAEPgbNJT5+QIm/k7dCvg9NrT0AAAAAAAAAAM1YY7zQM7U//LOuvuu0UDxnH108I7v5PAAAAAAAAAAAgKQSvelBtz+kl6q+I3FBvCotxDvAoNm9AAAAAAAAAAD6eTA+/8pvP3Tslz7OCRa/CUtNPcMRpD0AAAAAAAAAAHPavj2kJ5I/a82YPl8vIr/qZxE+Ve47PgAAAAAAAAAAZlO3PLuirj/Gsg8/Ol0Hv7MOrry1jZC9AAAAAAAAAAClPJK+6ByDP/xCPb/MOjC/Q+MZvj7PoL4AAAAAAAAAAHNt5z06wLA/drmdPpMrQL5eknU9SKZJPQAAAAAAAAAAmpXHO2jiwD/5Das8skqnPdBvxLzgYF47AAAAAAAAAADtQyA/yrdSPs1Eij6wXYq/CEekPkbh5b0AAAAAAAAAAArjob6qu1Y+e5jvvfQYTb8rE+e8ppFaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHjS77q3lWcCUhpRSlIwBbJRLgIwBdJRHQGWX+HBUJfJ1fZQoaAZoCWgPQwhG6j2V05BYwJSGlFKUaBVLomgWR0BlmpO1v2oOdX2UKGgGaAloD0MIVU57Ss7VS8CUhpRSlGgVS3RoFkdAZZqWE9Mbm3V9lChoBmgJaA9DCFWFBmLZbAbAlIaUUpRoFUt8aBZHQGWe2St/4It1fZQoaAZoCWgPQwhMNEjBU/grwJSGlFKUaBVLjGgWR0Bln1VR1oxpdX2UKGgGaAloD0MInu3RG+4oU8CUhpRSlGgVS1doFkdAZaBi3ocJdHV9lChoBmgJaA9DCPiKbr2mkz3AlIaUUpRoFUuAaBZHQGWh8mBvrGB1fZQoaAZoCWgPQwgaNV8lH4lJwJSGlFKUaBVLeWgWR0Blpee18b71dX2UKGgGaAloD0MI7C5QUmAVRsCUhpRSlGgVS3hoFkdAZaXgDzRQanV9lChoBmgJaA9DCDWZ8bbSbVDAlIaUUpRoFUtqaBZHQGWnr2YfGMp1fZQoaAZoCWgPQwhSt7OvPMgwwJSGlFKUaBVLTWgWR0BlqKzNUwSKdX2UKGgGaAloD0MIQ1iNJaybScCUhpRSlGgVS2poFkdAZanu2qkuYnV9lChoBmgJaA9DCBdi9UcYfi/AlIaUUpRoFUtSaBZHQGWqT6BRQ791fZQoaAZoCWgPQwgZ5ZmXw6BHwJSGlFKUaBVLbWgWR0Blrih6By0bdX2UKGgGaAloD0MIuAIK9fTpIkCUhpRSlGgVS3ZoFkdAZa5oL5RCQnV9lChoBmgJaA9DCNTuVwG+zVXAlIaUUpRoFUuDaBZHQGWuo0IkZ751fZQoaAZoCWgPQwiESlzHuLo9wJSGlFKUaBVLeGgWR0BltUOZssQNdX2UKGgGaAloD0MIpFGBk21iYMCUhpRSlGgVS31oFkdAZbZm8M/hVHV9lChoBmgJaA9DCJZbWg2JklfAlIaUUpRoFUtoaBZHQGW2tJnQID51fZQoaAZoCWgPQwizlZf8T9Y+wJSGlFKUaBVLXWgWR0BltusPrfLtdX2UKGgGaAloD0MIpTDvcaZFScCUhpRSlGgVS35oFkdAZbsU47zTW3V9lChoBmgJaA9DCIicvp6v71jAlIaUUpRoFUtVaBZHQGW7Vkc0cfh1fZQoaAZoCWgPQwgAcy1agMpOwJSGlFKUaBVLXmgWR0BlvGJgssg/dX2UKGgGaAloD0MIiUUMO4zYWcCUhpRSlGgVS2ZoFkdAZbxnTRYzSHV9lChoBmgJaA9DCLSULCehM1TAlIaUUpRoFUtfaBZHQGW+7zK9wm51fZQoaAZoCWgPQwgFUfcBSEUjQJSGlFKUaBVLd2gWR0BlwEYMvyskdX2UKGgGaAloD0MIs874vrgeR8CUhpRSlGgVS5toFkdAZcNIVdonKHV9lChoBmgJaA9DCHnr/NtlQ1XAlIaUUpRoFUt8aBZHQGXF+eOGTLZ1fZQoaAZoCWgPQwgz+zxGeZVXwJSGlFKUaBVLa2gWR0BlxoRwqAjIdX2UKGgGaAloD0MIsaNxqN/xT8CUhpRSlGgVS3poFkdAZcmN+b3GoHV9lChoBmgJaA9DCGO4OgDiikTAlIaUUpRoFUt6aBZHQGXJzl1bJOp1fZQoaAZoCWgPQwgP0egOYv5SwJSGlFKUaBVLWmgWR0BlydNlAeJYdX2UKGgGaAloD0MIfAxWnGrjTsCUhpRSlGgVS1ZoFkdAZcoJZ4fOlnV9lChoBmgJaA9DCFor2hznRjDAlIaUUpRoFUtWaBZHQGXKfqxC6Yp1fZQoaAZoCWgPQwg+d4L917dKwJSGlFKUaBVLTGgWR0BlzI3WFvhqdX2UKGgGaAloD0MIck2BzM43VcCUhpRSlGgVS2toFkdAZc6eGO+7DnV9lChoBmgJaA9DCJEotKz7azPAlIaUUpRoFUtaaBZHQGXTJxNqQBB1fZQoaAZoCWgPQwjf4AuTqTRJwJSGlFKUaBVLeGgWR0Bl1hhWo3rEdX2UKGgGaAloD0MIEeD0Lt43NsCUhpRSlGgVS0poFkdAZdaKWszVMHV9lChoBmgJaA9DCA+3Q8NiVEXAlIaUUpRoFUtBaBZHQGXYSBshxHZ1fZQoaAZoCWgPQwjIQnQIHKlFwJSGlFKUaBVLbGgWR0Bl2MP8Q7LddX2UKGgGaAloD0MIG53zUxzzQsCUhpRSlGgVS4BoFkdAZdlpSrHU+nV9lChoBmgJaA9DCMPwETElNjLAlIaUUpRoFUuDaBZHQGXaEWykbgl1fZQoaAZoCWgPQwgV/3dEhRxIwJSGlFKUaBVLWWgWR0Bl2pt52QnydX2UKGgGaAloD0MII6Et51LCT8CUhpRSlGgVS1loFkdAZd3YywfQr3V9lChoBmgJaA9DCF6FlJ9UVVDAlIaUUpRoFUtbaBZHQGXeGkep4r11fZQoaAZoCWgPQwgnbD8Z47M4wJSGlFKUaBVLd2gWR0Bl3hw84giedX2UKGgGaAloD0MI3Xh3ZKzORMCUhpRSlGgVS1poFkdAZd6LmZE2HnV9lChoBmgJaA9DCJOOcjCbXkjAlIaUUpRoFUtzaBZHQGXjCSzPa+N1fZQoaAZoCWgPQwg2BMdl3CpWwJSGlFKUaBVLXWgWR0Bl6DqrzXjEdX2UKGgGaAloD0MIhbAaS1jvQ8CUhpRSlGgVS3NoFkdAZejAtWdVenV9lChoBmgJaA9DCD9ya9Jte1HAlIaUUpRoFUtQaBZHQGXq7L2YfGN1fZQoaAZoCWgPQwh5eM+B5cFbwJSGlFKUaBVLV2gWR0Bl68OEug6EdX2UKGgGaAloD0MI2cwhqYW8TsCUhpRSlGgVS4xoFkdAZev0r9VFQXV9lChoBmgJaA9DCDUMHxFTDkHAlIaUUpRoFUtfaBZHQGXr3QMQVbl1fZQoaAZoCWgPQwibPdAKDBdLwJSGlFKUaBVLc2gWR0Bl7nJ5mh/RdX2UKGgGaAloD0MIOlrVko5OU8CUhpRSlGgVS1loFkdAZe/EZzgdfnV9lChoBmgJaA9DCGuad5yiz0HAlIaUUpRoFUtdaBZHQGXwhMSK3ux1fZQoaAZoCWgPQwiZZyWt+HRLwJSGlFKUaBVLb2gWR0Bl8H4AS39adX2UKGgGaAloD0MIvd9oxw2pScCUhpRSlGgVS29oFkdAZfOiliz9j3V9lChoBmgJaA9DCOXQItv5fFXAlIaUUpRoFUtwaBZHQGX0RtYSxqx1fZQoaAZoCWgPQwj1gHnIlN1HwJSGlFKUaBVLg2gWR0Bl9HFkxyn2dX2UKGgGaAloD0MIUInrGFdsUcCUhpRSlGgVS5BoFkdAZfVtqpLmIXV9lChoBmgJaA9DCPjgtUsbMVDAlIaUUpRoFUtmaBZHQGX5SGSIP9V1fZQoaAZoCWgPQwjrxVBOtD80QJSGlFKUaBVLhGgWR0Bl+jX4CZF5dX2UKGgGaAloD0MIVHQkl/8IVMCUhpRSlGgVS3ZoFkdAZftnjABT43V9lChoBmgJaA9DCO4m+KbpFUnAlIaUUpRoFUtoaBZHQGX75AhStNl1fZQoaAZoCWgPQwjyQc9m1aFIwJSGlFKUaBVLemgWR0Bl/aUA1ejVdX2UKGgGaAloD0MINWCQ9GlTSsCUhpRSlGgVS3hoFkdAZf4cKgIyCXV9lChoBmgJaA9DCBdJu9HHkFDAlIaUUpRoFUt4aBZHQGX+LeqJdjZ1fZQoaAZoCWgPQwh+Uu3T8bpTwJSGlFKUaBVLaGgWR0Bl/9S2phnbdX2UKGgGaAloD0MIlWBxOPM5UcCUhpRSlGgVS15oFkdAZgFfCyhSL3V9lChoBmgJaA9DCG4WLxaGLEnAlIaUUpRoFUtyaBZHQGYByxZ+x4Z1fZQoaAZoCWgPQwhyGTc10D5IwJSGlFKUaBVLWGgWR0BmAl9lVcUudX2UKGgGaAloD0MIGsIxy54oRcCUhpRSlGgVS3doFkdAZgKWmgrYoXV9lChoBmgJaA9DCJzbhHtlPlXAlIaUUpRoFUtsaBZHQGYD+mWMS9N1fZQoaAZoCWgPQwjIluXrMnxRwJSGlFKUaBVLlmgWR0BmBSMDOkckdX2UKGgGaAloD0MIG4LjMm4CVMCUhpRSlGgVS3poFkdAZgYX668QI3V9lChoBmgJaA9DCMh8QKAzjUXAlIaUUpRoFUtZaBZHQGYGSXD3ueB1fZQoaAZoCWgPQwia6zTSUgVAwJSGlFKUaBVLXGgWR0BmC4Et/WlNdX2UKGgGaAloD0MIRS44g7/vKcCUhpRSlGgVS4FoFkdAZg59Cu2ZzHV9lChoBmgJaA9DCGEZG7rZA07AlIaUUpRoFUtTaBZHQGYPAGB4D9x1fZQoaAZoCWgPQwidK0oJwRhDwJSGlFKUaBVLXGgWR0BmDyi/O+qSdX2UKGgGaAloD0MIqRPQRNiSQsCUhpRSlGgVS3xoFkdAZhAmCyyD7XV9lChoBmgJaA9DCIeKcf4mHkPAlIaUUpRoFUtbaBZHQGYQDzZpSJl1fZQoaAZoCWgPQwjkFYielEFHwJSGlFKUaBVLlGgWR0BmEFObiIcjdX2UKGgGaAloD0MI7l2DvvTpVMCUhpRSlGgVS3loFkdAZhBBBzFMqXV9lChoBmgJaA9DCGdiuhCrpUrAlIaUUpRoFUtlaBZHQGYQ9c0Ltu11fZQoaAZoCWgPQwhEozuInXU9wJSGlFKUaBVLj2gWR0BmEURe1KGtdX2UKGgGaAloD0MIVi3pKAfDOsCUhpRSlGgVS1poFkdAZhGgFHJ9zHV9lChoBmgJaA9DCEPJ5NTOBkXAlIaUUpRoFUtsaBZHQGYVL4vexfR1fZQoaAZoCWgPQwjxLawb7+I6wJSGlFKUaBVLm2gWR0BmFpjlPrOadX2UKGgGaAloD0MIcEIhAg6fScCUhpRSlGgVS3hoFkdAZhgnCO3lS3V9lChoBmgJaA9DCBQ/xty1pFjAlIaUUpRoFUtGaBZHQGYZTQeFL391fZQoaAZoCWgPQwhCfGDHf09CwJSGlFKUaBVLSWgWR0BmGZ+QU5+6dX2UKGgGaAloD0MI9Kj4vyN0TsCUhpRSlGgVS41oFkdAZhsR7JGOMnV9lChoBmgJaA9DCB050hkYpFPAlIaUUpRoFUtTaBZHQGYcNHxz7uV1fZQoaAZoCWgPQwiaJQFqamRWwJSGlFKUaBVLZmgWR0BmHXhZQpF1dX2UKGgGaAloD0MI3IKluoB1RMCUhpRSlGgVS2FoFkdAZh5oX9BKMHV9lChoBmgJaA9DCPci2o6p71HAlIaUUpRoFUtYaBZHQGYeY0uUUwl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68a2504da244ecc6c11f96ec5c51d2b2bf523409004c582aa287d06253f9c2f0
|
3 |
+
size 147292
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7c05cac10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7c05caca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7c05cad30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7c05cadc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb7c05cae50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb7c05caee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb7c05caf70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7c05ce040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb7c05ce0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7c05ce160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7c05ce1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7c05ce280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb7c05cbec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 114688,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678422218015751509,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb+J7zdH0U+tBALvzkCVr+EuLA+jYRivgAAAAAAAAAAbTNBvgOEoD+78+C+a/oBv0uNyD2tvuQ6AAAAAAAAAADm5So+wNLUPlxsjz7m+i6/Q05DvWhsZT4AAAAAAAAAAFNKAb4pP3M/8fgPvrcbXb9nbZe9EgMTvQAAAAAAAAAACnm9PiHbOb2yIaK8axMJO4Ayv7wWf1U9AACAPwAAgD8ArhS9iVAEPgbNJT5+QIm/k7dCvg9NrT0AAAAAAAAAAM1YY7zQM7U//LOuvuu0UDxnH108I7v5PAAAAAAAAAAAgKQSvelBtz+kl6q+I3FBvCotxDvAoNm9AAAAAAAAAAD6eTA+/8pvP3Tslz7OCRa/CUtNPcMRpD0AAAAAAAAAAHPavj2kJ5I/a82YPl8vIr/qZxE+Ve47PgAAAAAAAAAAZlO3PLuirj/Gsg8/Ol0Hv7MOrry1jZC9AAAAAAAAAAClPJK+6ByDP/xCPb/MOjC/Q+MZvj7PoL4AAAAAAAAAAHNt5z06wLA/drmdPpMrQL5eknU9SKZJPQAAAAAAAAAAmpXHO2jiwD/5Das8skqnPdBvxLzgYF47AAAAAAAAAADtQyA/yrdSPs1Eij6wXYq/CEekPkbh5b0AAAAAAAAAAArjob6qu1Y+e5jvvfQYTb8rE+e8ppFaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.1468799999999999,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHjS77q3lWcCUhpRSlIwBbJRLgIwBdJRHQGWX+HBUJfJ1fZQoaAZoCWgPQwhG6j2V05BYwJSGlFKUaBVLomgWR0BlmpO1v2oOdX2UKGgGaAloD0MIVU57Ss7VS8CUhpRSlGgVS3RoFkdAZZqWE9Mbm3V9lChoBmgJaA9DCFWFBmLZbAbAlIaUUpRoFUt8aBZHQGWe2St/4It1fZQoaAZoCWgPQwhMNEjBU/grwJSGlFKUaBVLjGgWR0Bln1VR1oxpdX2UKGgGaAloD0MInu3RG+4oU8CUhpRSlGgVS1doFkdAZaBi3ocJdHV9lChoBmgJaA9DCPiKbr2mkz3AlIaUUpRoFUuAaBZHQGWh8mBvrGB1fZQoaAZoCWgPQwgaNV8lH4lJwJSGlFKUaBVLeWgWR0Blpee18b71dX2UKGgGaAloD0MI7C5QUmAVRsCUhpRSlGgVS3hoFkdAZaXgDzRQanV9lChoBmgJaA9DCDWZ8bbSbVDAlIaUUpRoFUtqaBZHQGWnr2YfGMp1fZQoaAZoCWgPQwhSt7OvPMgwwJSGlFKUaBVLTWgWR0BlqKzNUwSKdX2UKGgGaAloD0MIQ1iNJaybScCUhpRSlGgVS2poFkdAZanu2qkuYnV9lChoBmgJaA9DCBdi9UcYfi/AlIaUUpRoFUtSaBZHQGWqT6BRQ791fZQoaAZoCWgPQwgZ5ZmXw6BHwJSGlFKUaBVLbWgWR0Blrih6By0bdX2UKGgGaAloD0MIuAIK9fTpIkCUhpRSlGgVS3ZoFkdAZa5oL5RCQnV9lChoBmgJaA9DCNTuVwG+zVXAlIaUUpRoFUuDaBZHQGWuo0IkZ751fZQoaAZoCWgPQwiESlzHuLo9wJSGlFKUaBVLeGgWR0BltUOZssQNdX2UKGgGaAloD0MIpFGBk21iYMCUhpRSlGgVS31oFkdAZbZm8M/hVHV9lChoBmgJaA9DCJZbWg2JklfAlIaUUpRoFUtoaBZHQGW2tJnQID51fZQoaAZoCWgPQwizlZf8T9Y+wJSGlFKUaBVLXWgWR0BltusPrfLtdX2UKGgGaAloD0MIpTDvcaZFScCUhpRSlGgVS35oFkdAZbsU47zTW3V9lChoBmgJaA9DCIicvp6v71jAlIaUUpRoFUtVaBZHQGW7Vkc0cfh1fZQoaAZoCWgPQwgAcy1agMpOwJSGlFKUaBVLXmgWR0BlvGJgssg/dX2UKGgGaAloD0MIiUUMO4zYWcCUhpRSlGgVS2ZoFkdAZbxnTRYzSHV9lChoBmgJaA9DCLSULCehM1TAlIaUUpRoFUtfaBZHQGW+7zK9wm51fZQoaAZoCWgPQwgFUfcBSEUjQJSGlFKUaBVLd2gWR0BlwEYMvyskdX2UKGgGaAloD0MIs874vrgeR8CUhpRSlGgVS5toFkdAZcNIVdonKHV9lChoBmgJaA9DCHnr/NtlQ1XAlIaUUpRoFUt8aBZHQGXF+eOGTLZ1fZQoaAZoCWgPQwgz+zxGeZVXwJSGlFKUaBVLa2gWR0BlxoRwqAjIdX2UKGgGaAloD0MIsaNxqN/xT8CUhpRSlGgVS3poFkdAZcmN+b3GoHV9lChoBmgJaA9DCGO4OgDiikTAlIaUUpRoFUt6aBZHQGXJzl1bJOp1fZQoaAZoCWgPQwgP0egOYv5SwJSGlFKUaBVLWmgWR0BlydNlAeJYdX2UKGgGaAloD0MIfAxWnGrjTsCUhpRSlGgVS1ZoFkdAZcoJZ4fOlnV9lChoBmgJaA9DCFor2hznRjDAlIaUUpRoFUtWaBZHQGXKfqxC6Yp1fZQoaAZoCWgPQwg+d4L917dKwJSGlFKUaBVLTGgWR0BlzI3WFvhqdX2UKGgGaAloD0MIck2BzM43VcCUhpRSlGgVS2toFkdAZc6eGO+7DnV9lChoBmgJaA9DCJEotKz7azPAlIaUUpRoFUtaaBZHQGXTJxNqQBB1fZQoaAZoCWgPQwjf4AuTqTRJwJSGlFKUaBVLeGgWR0Bl1hhWo3rEdX2UKGgGaAloD0MIEeD0Lt43NsCUhpRSlGgVS0poFkdAZdaKWszVMHV9lChoBmgJaA9DCA+3Q8NiVEXAlIaUUpRoFUtBaBZHQGXYSBshxHZ1fZQoaAZoCWgPQwjIQnQIHKlFwJSGlFKUaBVLbGgWR0Bl2MP8Q7LddX2UKGgGaAloD0MIG53zUxzzQsCUhpRSlGgVS4BoFkdAZdlpSrHU+nV9lChoBmgJaA9DCMPwETElNjLAlIaUUpRoFUuDaBZHQGXaEWykbgl1fZQoaAZoCWgPQwgV/3dEhRxIwJSGlFKUaBVLWWgWR0Bl2pt52QnydX2UKGgGaAloD0MII6Et51LCT8CUhpRSlGgVS1loFkdAZd3YywfQr3V9lChoBmgJaA9DCF6FlJ9UVVDAlIaUUpRoFUtbaBZHQGXeGkep4r11fZQoaAZoCWgPQwgnbD8Z47M4wJSGlFKUaBVLd2gWR0Bl3hw84giedX2UKGgGaAloD0MI3Xh3ZKzORMCUhpRSlGgVS1poFkdAZd6LmZE2HnV9lChoBmgJaA9DCJOOcjCbXkjAlIaUUpRoFUtzaBZHQGXjCSzPa+N1fZQoaAZoCWgPQwg2BMdl3CpWwJSGlFKUaBVLXWgWR0Bl6DqrzXjEdX2UKGgGaAloD0MIhbAaS1jvQ8CUhpRSlGgVS3NoFkdAZejAtWdVenV9lChoBmgJaA9DCD9ya9Jte1HAlIaUUpRoFUtQaBZHQGXq7L2YfGN1fZQoaAZoCWgPQwh5eM+B5cFbwJSGlFKUaBVLV2gWR0Bl68OEug6EdX2UKGgGaAloD0MI2cwhqYW8TsCUhpRSlGgVS4xoFkdAZev0r9VFQXV9lChoBmgJaA9DCDUMHxFTDkHAlIaUUpRoFUtfaBZHQGXr3QMQVbl1fZQoaAZoCWgPQwibPdAKDBdLwJSGlFKUaBVLc2gWR0Bl7nJ5mh/RdX2UKGgGaAloD0MIOlrVko5OU8CUhpRSlGgVS1loFkdAZe/EZzgdfnV9lChoBmgJaA9DCGuad5yiz0HAlIaUUpRoFUtdaBZHQGXwhMSK3ux1fZQoaAZoCWgPQwiZZyWt+HRLwJSGlFKUaBVLb2gWR0Bl8H4AS39adX2UKGgGaAloD0MIvd9oxw2pScCUhpRSlGgVS29oFkdAZfOiliz9j3V9lChoBmgJaA9DCOXQItv5fFXAlIaUUpRoFUtwaBZHQGX0RtYSxqx1fZQoaAZoCWgPQwj1gHnIlN1HwJSGlFKUaBVLg2gWR0Bl9HFkxyn2dX2UKGgGaAloD0MIUInrGFdsUcCUhpRSlGgVS5BoFkdAZfVtqpLmIXV9lChoBmgJaA9DCPjgtUsbMVDAlIaUUpRoFUtmaBZHQGX5SGSIP9V1fZQoaAZoCWgPQwjrxVBOtD80QJSGlFKUaBVLhGgWR0Bl+jX4CZF5dX2UKGgGaAloD0MIVHQkl/8IVMCUhpRSlGgVS3ZoFkdAZftnjABT43V9lChoBmgJaA9DCO4m+KbpFUnAlIaUUpRoFUtoaBZHQGX75AhStNl1fZQoaAZoCWgPQwjyQc9m1aFIwJSGlFKUaBVLemgWR0Bl/aUA1ejVdX2UKGgGaAloD0MINWCQ9GlTSsCUhpRSlGgVS3hoFkdAZf4cKgIyCXV9lChoBmgJaA9DCBdJu9HHkFDAlIaUUpRoFUt4aBZHQGX+LeqJdjZ1fZQoaAZoCWgPQwh+Uu3T8bpTwJSGlFKUaBVLaGgWR0Bl/9S2phnbdX2UKGgGaAloD0MIlWBxOPM5UcCUhpRSlGgVS15oFkdAZgFfCyhSL3V9lChoBmgJaA9DCG4WLxaGLEnAlIaUUpRoFUtyaBZHQGYByxZ+x4Z1fZQoaAZoCWgPQwhyGTc10D5IwJSGlFKUaBVLWGgWR0BmAl9lVcUudX2UKGgGaAloD0MIGsIxy54oRcCUhpRSlGgVS3doFkdAZgKWmgrYoXV9lChoBmgJaA9DCJzbhHtlPlXAlIaUUpRoFUtsaBZHQGYD+mWMS9N1fZQoaAZoCWgPQwjIluXrMnxRwJSGlFKUaBVLlmgWR0BmBSMDOkckdX2UKGgGaAloD0MIG4LjMm4CVMCUhpRSlGgVS3poFkdAZgYX668QI3V9lChoBmgJaA9DCMh8QKAzjUXAlIaUUpRoFUtZaBZHQGYGSXD3ueB1fZQoaAZoCWgPQwia6zTSUgVAwJSGlFKUaBVLXGgWR0BmC4Et/WlNdX2UKGgGaAloD0MIRS44g7/vKcCUhpRSlGgVS4FoFkdAZg59Cu2ZzHV9lChoBmgJaA9DCGEZG7rZA07AlIaUUpRoFUtTaBZHQGYPAGB4D9x1fZQoaAZoCWgPQwidK0oJwRhDwJSGlFKUaBVLXGgWR0BmDyi/O+qSdX2UKGgGaAloD0MIqRPQRNiSQsCUhpRSlGgVS3xoFkdAZhAmCyyD7XV9lChoBmgJaA9DCIeKcf4mHkPAlIaUUpRoFUtbaBZHQGYQDzZpSJl1fZQoaAZoCWgPQwjkFYielEFHwJSGlFKUaBVLlGgWR0BmEFObiIcjdX2UKGgGaAloD0MI7l2DvvTpVMCUhpRSlGgVS3loFkdAZhBBBzFMqXV9lChoBmgJaA9DCGdiuhCrpUrAlIaUUpRoFUtlaBZHQGYQ9c0Ltu11fZQoaAZoCWgPQwhEozuInXU9wJSGlFKUaBVLj2gWR0BmEURe1KGtdX2UKGgGaAloD0MIVi3pKAfDOsCUhpRSlGgVS1poFkdAZhGgFHJ9zHV9lChoBmgJaA9DCEPJ5NTOBkXAlIaUUpRoFUtsaBZHQGYVL4vexfR1fZQoaAZoCWgPQwjxLawb7+I6wJSGlFKUaBVLm2gWR0BmFpjlPrOadX2UKGgGaAloD0MIcEIhAg6fScCUhpRSlGgVS3hoFkdAZhgnCO3lS3V9lChoBmgJaA9DCBQ/xty1pFjAlIaUUpRoFUtGaBZHQGYZTQeFL391fZQoaAZoCWgPQwhCfGDHf09CwJSGlFKUaBVLSWgWR0BmGZ+QU5+6dX2UKGgGaAloD0MI9Kj4vyN0TsCUhpRSlGgVS41oFkdAZhsR7JGOMnV9lChoBmgJaA9DCB050hkYpFPAlIaUUpRoFUtTaBZHQGYcNHxz7uV1fZQoaAZoCWgPQwiaJQFqamRWwJSGlFKUaBVLZmgWR0BmHXhZQpF1dX2UKGgGaAloD0MI3IKluoB1RMCUhpRSlGgVS2FoFkdAZh5oX9BKMHV9lChoBmgJaA9DCPci2o6p71HAlIaUUpRoFUtYaBZHQGYeY0uUUwl1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 32,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:303c29cd418b214d39efea0e05b0148ce7e53ae04f53a88ffec148e2766b5715
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:678123141c4b7e74fcfe10bfbd02ec76c3406e53a22c9b0a5b88e528ecb519c4
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (279 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -177.86286766835255, "std_reward": 61.419595327481446, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T05:42:09.414971"}
|