rct_model / train_model.py
frutiemax's picture
Revert to not using accelerated
21640c8
raw
history blame
6.05 kB
from datasets import load_dataset
from PIL.Image import Image
import PIL
from PIL.Image import Resampling
import numpy as np
from rct_diffusion_pipeline import RCTDiffusionPipeline
import torch
import torchvision.transforms as T
import torch.nn.functional as F
from diffusers.optimization import get_cosine_schedule_with_warmup
from tqdm.auto import tqdm
from accelerate import Accelerator
from diffusers import DDPMScheduler, UNet2DConditionModel
def save_and_test(pipeline, epoch):
outputs = pipeline([[('aleppo pine tree', 1.0)]], [[('dark green', 1.0)]])
for image_index in range(len(outputs)):
file_name = f'out{image_index}_{epoch}.png'
outputs[image_index].save(file_name)
model_file = f'rct_foliage_{epoch}.pth'
pipeline.save_pretrained(model_file)
def train_model(batch_size=4, epochs=100, scheduler_num_timesteps=20, save_model_interval=10, start_learning_rate=1e-3, lr_warmup_steps=500):
dataset = load_dataset('frutiemax/rct_dataset')
dataset = dataset['train']
num_images = int(dataset.num_rows / 4)
# let's get all the entries for the 4 views split in four lists
views = []
for view_index in range(4):
entries = [entry for entry in dataset if entry['view'] == view_index]
views.append(entries)
# convert those images to 256x256 by cropping and scaling up the image
image_views = []
for view_index in range(4):
images = []
for entry in views[view_index]:
image = entry['image']
scale_factor = int(np.minimum(256 / image.width, 256 / image.height))
image = Image.resize(image, size=(scale_factor * image.width, scale_factor * image.height), resample=Resampling.NEAREST)
new_image = PIL.Image.new('RGB', (256, 256))
new_image.paste(image, box=(int((256 - image.width)/2), int((256 - image.height)/2)))
images.append(new_image)
image_views.append(images)
del views
# convert those views in tensors
targets = torch.Tensor(size=(num_images, 4, 3, 256, 256)).to(dtype=torch.float16)
pillow_to_tensor = T.ToTensor()
for image_index in range(num_images):
for view_index in range(4):
targets[image_index, view_index] = pillow_to_tensor(image_views[view_index][image_index]).to(dtype=torch.float16)
del image_views
del entries
targets = torch.reshape(targets, (num_images, 12, 256, 256))
# get the labels
view0_entries = [row for row in dataset if row['view'] == 0]
obj_descriptions = [row['object_description'] for row in view0_entries]
colors1 = [row['color1'] for row in view0_entries]
colors2 = [row['color2'] for row in view0_entries]
colors3 = [row['color3'] for row in view0_entries]
del view0_entries
# convert those descriptions, color1, color2 and color3 to a list of tuple with label and weight=1.0
obj_descriptions = [[(obj_desc, 1.0)] for obj_desc in obj_descriptions]
colors1 = [[(color1, 1.0)] for color1 in colors1]
colors2 = [[(color2, 1.0)] for color2 in colors2]
colors3 = [[(color3, 1.0)] for color3 in colors3]
# convert those tuples in numpy arrays using the helper function of the model
model = RCTDiffusionPipeline()
obj_descriptions = [model.get_object_description_weights(obj_desc) for obj_desc in obj_descriptions]
colors1 = [model.get_color1_weights(color1) for color1 in colors1]
colors2 = [model.get_color2_weights(color2) for color2 in colors2]
colors3 = [model.get_color3_weights(color3) for color3 in colors3]
# finally, convert those numpy arrays to a tensor
class_labels = model.pack_labels_to_tensor(num_images, obj_descriptions, colors1, colors2, colors3)
del obj_descriptions
del colors1
del colors2
del colors3
del dataset
unet = RCTDiffusionPipeline.get_default_unet(160)
optimizer = torch.optim.Adam(unet.parameters(), lr=start_learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps,
num_training_steps=num_images * epochs
)
# lets train for 100 epoch for each sprite in the dataset with a random noise level
progress_bar = tqdm(total=epochs)
scheduler = DDPMScheduler(scheduler_num_timesteps)
unet = unet.to(device='cuda', dtype=torch.float16)
scheduler.set_timesteps(scheduler_num_timesteps)
for epoch in range(epochs):
# create a noisy version of each sprite
for batch_index in range(0, num_images, batch_size):
progress_bar.set_description(f'epoch={epoch}, batch_index={batch_index}')
batch_end = np.minimum(num_images, batch_index + batch_size)
clean_images = targets[batch_index:batch_end]
clean_images = torch.reshape(clean_images, ((batch_end - batch_index), 12, 256, 256)).to(device='cuda', dtype=torch.float16)
noise = torch.randn(clean_images.shape, dtype=torch.float16, device='cuda')
timesteps = torch.randint(0, scheduler.config.num_train_timesteps, (batch_end - batch_index, )).to(device='cuda')
#timesteps = timesteps.to(dtype=torch.int, device='cuda')
noisy_images = scheduler.add_noise(clean_images, noise, timesteps)
noise_pred = unet(noisy_images, timesteps, class_labels[batch_index:batch_end].to(device='cuda',dtype=torch.float16), return_dict=False)[0]
#noise_pred = noise_pred.to(device='cuda', dtype=torch.float16)
loss = F.mse_loss(noise_pred, noise)
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if (epoch + 1) % save_model_interval == 0:
model.unet = unet
model.scheduler = scheduler
save_and_test(model, epoch)
del model.unet
del model.scheduler
progress_bar.update(1)
if __name__ == '__main__':
train_model(8, save_model_interval=1)