frutiemax commited on
Commit
a150f0f
1 Parent(s): 4f25fc2

Fix other things...

Browse files
Files changed (3) hide show
  1. rct_diffusion_pipeline.py +1 -0
  2. test_pipeline.py +5 -5
  3. train_model.py +0 -1
rct_diffusion_pipeline.py CHANGED
@@ -29,6 +29,7 @@ class RCTDiffusionPipeline(DiffusionPipeline):
29
 
30
  # channels for 1 image
31
  self.num_channels = int(self.unet.config.in_channels / 4)
 
32
 
33
  def load_dictionaries_from_dataset(self):
34
  dataset = load_dataset('frutiemax/rct_dataset')
 
29
 
30
  # channels for 1 image
31
  self.num_channels = int(self.unet.config.in_channels / 4)
32
+ self.load_dictionaries_from_dataset()
33
 
34
  def load_dictionaries_from_dataset(self):
35
  dataset = load_dataset('frutiemax/rct_dataset')
test_pipeline.py CHANGED
@@ -1,17 +1,17 @@
1
  from rct_diffusion_pipeline import RCTDiffusionPipeline
2
  from diffusers import UNet2DConditionModel, DDPMScheduler, AutoencoderKL
3
-
4
 
5
  torch_device = "cuda"
6
 
7
- unet = UNet2DConditionModel(sample_size=64, in_channels=16, out_channels=16, \
8
  down_block_types=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'),\
9
  up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'), cross_attention_dim=160,
10
  block_out_channels=(64, 128, 256), norm_num_groups=32)
 
11
  scheduler = DDPMScheduler(num_train_timesteps=20)
12
- vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae", use_safetensors=True)
13
- vae.tile_sample_min_size = 256
14
-
15
 
16
  pipeline = RCTDiffusionPipeline(unet, scheduler, vae)
17
  output = pipeline([[('aleppo pine tree', 1.0)]], [[('dark green', 1.0)]])
 
1
  from rct_diffusion_pipeline import RCTDiffusionPipeline
2
  from diffusers import UNet2DConditionModel, DDPMScheduler, AutoencoderKL
3
+ import torch
4
 
5
  torch_device = "cuda"
6
 
7
+ unet = UNet2DConditionModel(sample_size=32, in_channels=16, out_channels=16, \
8
  down_block_types=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'),\
9
  up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'), cross_attention_dim=160,
10
  block_out_channels=(64, 128, 256), norm_num_groups=32)
11
+ unet = unet.to('cuda', dtype=torch.float16)
12
  scheduler = DDPMScheduler(num_train_timesteps=20)
13
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", use_safetensors=True)
14
+ vae = vae.to('cuda', dtype=torch.float16)
 
15
 
16
  pipeline = RCTDiffusionPipeline(unet, scheduler, vae)
17
  output = pipeline([[('aleppo pine tree', 1.0)]], [[('dark green', 1.0)]])
train_model.py CHANGED
@@ -119,7 +119,6 @@ def train_model(batch_size=4, epochs=100, scheduler_num_timesteps=20, save_model
119
  num_training_steps=num_images * epochs
120
  )
121
  model = RCTDiffusionPipeline(unet, scheduler, vae)
122
- model.load_dictionaries_from_dataset()
123
  labels = convert_labels(dataset, model, num_images)
124
  del model
125
 
 
119
  num_training_steps=num_images * epochs
120
  )
121
  model = RCTDiffusionPipeline(unet, scheduler, vae)
 
122
  labels = convert_labels(dataset, model, num_images)
123
  del model
124