from dataclasses import dataclass NUM_TIMESTEPS = 50 @dataclass class TrainingConfig: image_size = 64 # the generated image resolution train_batch_size = 16 eval_batch_size = 16 # how many images to sample during evaluation num_epochs = 2000 gradient_accumulation_steps = 1 learning_rate = 1e-4 lr_warmup_steps = 500 save_image_epochs = 100 save_model_epochs = 300 mixed_precision = "fp16" # `no` for float32, `fp16` for automatic mixed precision output_dir = "ddpm-rct" # the model name locally and on the HF Hub push_to_hub = False # whether to upload the saved model to the HF Hub hub_private_repo = False overwrite_output_dir = True # overwrite the old model when re-running the notebook seed = 0 config = TrainingConfig() from datasets import load_dataset config.dataset_name = "frutiemax/rct_dataset" dataset = load_dataset(config.dataset_name, split="train[0:4]") # import matplotlib.pyplot as plt # fig, axs = plt.subplots(1, 4, figsize=(16, 4)) # for i, image in enumerate(dataset[:4]["image"]): # axs[i].imshow(image) # axs[i].set_axis_off() # fig.show() from torchvision import transforms preprocess = transforms.Compose( [ transforms.Resize((config.image_size, config.image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def transform(examples): images = [preprocess(image.convert("RGB")) for image in examples["image"]] return {"images": images} dataset.set_transform(transform) import torch train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True) from diffusers import UNet2DModel model = UNet2DModel( sample_size=config.image_size, # the target image resolution in_channels=3, # the number of input channels, 3 for RGB images out_channels=3, # the number of output channels layers_per_block=2, # how many ResNet layers to use per UNet block block_out_channels=(256, 256, 512, 512, 1024, 1024), # the number of output channels for each UNet block down_block_types=( "DownBlock2D", # a regular ResNet downsampling block "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention "DownBlock2D", ), up_block_types=( "UpBlock2D", # a regular ResNet upsampling block "AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), ) sample_image = dataset[0]["images"].unsqueeze(0) print("Input shape:", sample_image.shape) print("Output shape:", model(sample_image, timestep=0).sample.shape) import torch from PIL import Image from diffusers import DDPMScheduler noise_scheduler = DDPMScheduler(num_train_timesteps=NUM_TIMESTEPS) noise = torch.randn(sample_image.shape) import torch.nn.functional as F from diffusers.optimization import get_cosine_schedule_with_warmup optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate) lr_scheduler = get_cosine_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=config.lr_warmup_steps, num_training_steps=(len(train_dataloader) * config.num_epochs), ) from diffusers import DDPMPipeline from diffusers.utils import make_image_grid import math import os def evaluate(config, epoch, pipeline): # Sample some images from random noise (this is the backward diffusion process). # The default pipeline output type is `List[PIL.Image]` images = pipeline( batch_size=config.eval_batch_size, generator=torch.manual_seed(config.seed), num_inference_steps=NUM_TIMESTEPS ).images # Make a grid out of the images image_grid = make_image_grid(images, rows=4, cols=4) # Save the images test_dir = os.path.join(config.output_dir, "samples") os.makedirs(test_dir, exist_ok=True) image_grid.save(f"{test_dir}/{epoch:04d}.png") from accelerate import Accelerator from huggingface_hub import HfFolder, Repository, whoami from tqdm.auto import tqdm from pathlib import Path import os def get_full_repo_name(model_id: str, organization: str = None, token: str = None): if token is None: token = HfFolder.get_token() if organization is None: username = whoami(token)["name"] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler): # Initialize accelerator and tensorboard logging accelerator = Accelerator( mixed_precision=config.mixed_precision, gradient_accumulation_steps=config.gradient_accumulation_steps, log_with="tensorboard", project_dir=os.path.join(config.output_dir, "logs"), ) if accelerator.is_main_process: if config.push_to_hub: repo_name = get_full_repo_name(Path(config.output_dir).name) repo = Repository(config.output_dir, clone_from=repo_name) elif config.output_dir is not None: os.makedirs(config.output_dir, exist_ok=True) accelerator.init_trackers("train_example") # Prepare everything # There is no specific order to remember, you just need to unpack the # objects in the same order you gave them to the prepare method. model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) global_step = 0 # Now you train the model for epoch in range(config.num_epochs): progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process) progress_bar.set_description(f"Epoch {epoch}") for step, batch in enumerate(train_dataloader): clean_images = batch["images"] # Sample noise to add to the images noise = torch.randn(clean_images.shape).to(clean_images.device) bs = clean_images.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) with accelerator.accumulate(model): # Predict the noise residual noise_pred = model(noisy_images, timesteps, return_dict=False)[0] loss = F.mse_loss(noise_pred, noise) accelerator.backward(loss) accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) global_step += 1 # After each epoch you optionally sample some demo images with evaluate() and save the model if accelerator.is_main_process: pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1: evaluate(config, epoch, pipeline) if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1: if config.push_to_hub: repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=True) else: pipeline.save_pretrained(config.output_dir) from accelerate import notebook_launcher args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler) notebook_launcher(train_loop, args, num_processes=1) import glob sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png")) Image.open(sample_images[-1])