File size: 2,216 Bytes
ee2a7cb
 
 
 
 
 
faf749a
 
ee2a7cb
 
 
 
faf749a
 
 
 
 
 
 
 
 
 
 
 
ee2a7cb
 
 
 
 
 
 
faf749a
ee2a7cb
faf749a
 
ee2a7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- fsicoli/cv16-fleurs
metrics:
- wer
model-index:
- name: whisper-medium-pt-cv16-fleurs2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fsicoli/cv16-fleurs default
      type: fsicoli/cv16-fleurs
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.09492975940578072
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-pt-cv16-fleurs2

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv16-fleurs default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1428
- Wer: 0.0949

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25000

- training_steps: 25000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|
| 0.2244        | 2.3343  | 5000  | 0.1728          | 0.1110 |
| 0.1471        | 4.6685  | 10000 | 0.1515          | 0.0996 |
| 0.149         | 7.0028  | 15000 | 0.1428          | 0.0949 |
| 0.0697        | 9.3371  | 20000 | 0.1436          | 0.0940 |
| 0.0374        | 11.6713 | 25000 | 0.1561          | 0.0972 |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.19.1