fursov's picture
Model save
661f45d verified
|
raw
history blame
2.99 kB
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner-gec-roberta-large-v4
    results: []

ner-gec-roberta-large-v4

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2491
  • Precision: 0.6427
  • Recall: 0.5771
  • F1: 0.6081
  • Accuracy: 0.9614

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2536 0.58 500 0.9347 0.0376 0.2469 0.0814 0.0245
0.2316 1.15 1000 0.9359 0.1365 0.2339 0.2272 0.0975
0.2175 1.73 1500 0.9392 0.1823 0.2172 0.2842 0.1342
0.1757 2.3 2000 0.9438 0.3123 0.1979 0.4011 0.2556
0.1682 2.88 2500 0.9502 0.3911 0.1817 0.4787 0.3307
0.121 3.46 3000 0.9537 0.4504 0.1753 0.5310 0.3910
0.0982 4.03 3500 0.9556 0.4980 0.1807 0.5606 0.4480
0.0858 4.61 4000 0.9577 0.5304 0.1732 0.5867 0.4839
0.0563 5.18 4500 0.1839 0.6007 0.5155 0.5548 0.9585
0.0586 5.76 5000 0.1804 0.6231 0.5237 0.5691 0.9605
0.0404 6.34 5500 0.1948 0.6214 0.5423 0.5792 0.9599
0.0397 6.91 6000 0.1994 0.6309 0.5458 0.5852 0.9610
0.0281 7.49 6500 0.2131 0.6345 0.5568 0.5931 0.9610
0.0182 8.06 7000 0.2249 0.6507 0.5649 0.6047 0.9625
0.0188 8.64 7500 0.2322 0.6413 0.5782 0.6081 0.9612
0.0123 9.22 8000 0.2473 0.6506 0.5777 0.6120 0.9622
0.0123 9.79 8500 0.2491 0.6427 0.5771 0.6081 0.9614

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0