patrickvonplaten commited on
Commit
c9e4251
1 Parent(s): 8f575ac

Upload modeling_ddim.py

Browse files
Files changed (1) hide show
  1. modeling_ddim.py +94 -0
modeling_ddim.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+
19
+ import tqdm
20
+ from diffusers import DiffusionPipeline
21
+
22
+
23
+ class DDIM(DiffusionPipeline):
24
+ def __init__(self, unet, noise_scheduler):
25
+ super().__init__()
26
+ self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
27
+
28
+ def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
29
+ # eta corresponds to η in paper and should be between [0, 1]
30
+ if torch_device is None:
31
+ torch_device = "cuda" if torch.cuda.is_available() else "cpu"
32
+
33
+ num_trained_timesteps = self.noise_scheduler.num_timesteps
34
+ inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
35
+
36
+ self.unet.to(torch_device)
37
+
38
+ # Sample gaussian noise to begin loop
39
+ image = self.noise_scheduler.sample_noise(
40
+ (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
41
+ device=torch_device,
42
+ generator=generator,
43
+ )
44
+
45
+ # See formulas (9), (10) and (7) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
46
+ # Ideally, read DDIM paper in-detail understanding
47
+
48
+ # Notation (<variable name> -> <name in paper>
49
+ # - pred_noise_t -> e_theta(x_t, t)
50
+ # - pred_original_image -> f_theta(x_t, t) or x_0
51
+ # - std_dev_t -> sigma_t
52
+
53
+ for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
54
+ # 1. predict noise residual
55
+ with torch.no_grad():
56
+ pred_noise_t = self.unet(image, inference_step_times[t])
57
+
58
+ # 2. get actual t and t-1
59
+ train_step = inference_step_times[t]
60
+ prev_train_step = inference_step_times[t - 1] if t > 0 else -1
61
+
62
+ # 3. compute alphas, betas
63
+ alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
64
+ alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
65
+ beta_prod_t_sqrt = (1 - alpha_prod_t).sqrt()
66
+ beta_prod_t_prev_sqrt = (1 - alpha_prod_t_prev).sqrt()
67
+
68
+ # 4. Compute predicted previous image from predicted noise
69
+ # First: compute predicted original image from predicted noise also called
70
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
71
+ pred_original_image = (image - beta_prod_t_sqrt * pred_noise_t) / alpha_prod_t.sqrt()
72
+ # Second: Clip "predicted x_0"
73
+ pred_original_image = torch.clamp(pred_original_image, -1, 1)
74
+ # Third: Compute variance: "sigma_t" -> see
75
+ # std_dev_t = (1 - alpha_prod_t / alpha_prod_t_prev).sqrt() * beta_prod_t_prev_sqrt / beta_prod_t_sqrt
76
+ std_dev_t = (1 - alpha_prod_t / alpha_prod_t_prev).sqrt()
77
+ std_dev_t = std_dev_t * eta
78
+ # Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
79
+ pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t
80
+
81
+ # Fourth: Compute outer formula (DDIM formula)
82
+ pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction
83
+
84
+ # if eta > 0.0 add noise. Note eta = 1.0 essentially corresponds to DDPM
85
+ if eta > 0.0:
86
+ noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
87
+ prev_image = pred_prev_image + std_dev_t * noise
88
+ else:
89
+ prev_image = pred_prev_image
90
+
91
+ # Set current image to prev_image: x_t -> x_t-1
92
+ image = prev_image
93
+
94
+ return image