Update modeling_latent_diffusion.py
Browse files
modeling_latent_diffusion.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
-
# pytorch_diffusion + derived encoder decoder
|
2 |
-
import math
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
import tqdm
|
6 |
import torch
|
7 |
-
import torch.nn as nn
|
8 |
|
9 |
from diffusers import DiffusionPipeline
|
10 |
|
11 |
-
|
12 |
-
from .
|
13 |
-
from .
|
|
|
14 |
|
15 |
class LatentDiffusion(DiffusionPipeline):
|
16 |
def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler):
|
@@ -95,4 +91,4 @@ class LatentDiffusion(DiffusionPipeline):
|
|
95 |
image = self.vqvae.decode(image)
|
96 |
image = torch.clamp((image+1.0)/2.0, min=0.0, max=1.0)
|
97 |
|
98 |
-
return image
|
|
|
|
|
|
|
|
|
|
|
1 |
import tqdm
|
2 |
import torch
|
|
|
3 |
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
6 |
+
# add these relative imports here, so we can load from hub
|
7 |
+
from .modeling_vae import AutoencoderKL # NOQA
|
8 |
+
from .configuration_ldmbert import LDMBertConfig # NOQA
|
9 |
+
from .modeling_ldmbert import LDMBertModel # NOQA
|
10 |
|
11 |
class LatentDiffusion(DiffusionPipeline):
|
12 |
def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler):
|
|
|
91 |
image = self.vqvae.decode(image)
|
92 |
image = torch.clamp((image+1.0)/2.0, min=0.0, max=1.0)
|
93 |
|
94 |
+
return image
|