fydhfzh commited on
Commit
e12ac27
·
verified ·
1 Parent(s): 8f3dbcb

End of training

Browse files
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/hubert-base-ls960
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: hubert-classifier-aug-fold-1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # hubert-classifier-aug-fold-1
20
+
21
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5322
24
+ - Accuracy: 0.8693
25
+ - Precision: 0.8831
26
+ - Recall: 0.8693
27
+ - F1: 0.8678
28
+ - Binary: 0.9088
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0001
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 128
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 30
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
62
+ | No log | 0.13 | 50 | 3.9624 | 0.0351 | 0.0015 | 0.0351 | 0.0028 | 0.3143 |
63
+ | No log | 0.27 | 100 | 3.4385 | 0.0634 | 0.0224 | 0.0634 | 0.0195 | 0.3432 |
64
+ | No log | 0.4 | 150 | 3.2477 | 0.0864 | 0.0446 | 0.0864 | 0.0302 | 0.3568 |
65
+ | No log | 0.54 | 200 | 2.9937 | 0.1282 | 0.0531 | 0.1282 | 0.0622 | 0.3873 |
66
+ | No log | 0.67 | 250 | 2.7511 | 0.2456 | 0.1513 | 0.2456 | 0.1564 | 0.4709 |
67
+ | No log | 0.81 | 300 | 2.4666 | 0.3077 | 0.2328 | 0.3077 | 0.2207 | 0.5151 |
68
+ | No log | 0.94 | 350 | 2.1657 | 0.3954 | 0.3244 | 0.3954 | 0.3091 | 0.5765 |
69
+ | 3.2407 | 1.08 | 400 | 1.8980 | 0.4453 | 0.3778 | 0.4453 | 0.3735 | 0.6128 |
70
+ | 3.2407 | 1.21 | 450 | 1.6861 | 0.5371 | 0.4729 | 0.5371 | 0.4709 | 0.6744 |
71
+ | 3.2407 | 1.35 | 500 | 1.5060 | 0.5897 | 0.5801 | 0.5897 | 0.5439 | 0.7140 |
72
+ | 3.2407 | 1.48 | 550 | 1.3841 | 0.6019 | 0.5868 | 0.6019 | 0.5615 | 0.7189 |
73
+ | 3.2407 | 1.62 | 600 | 1.2200 | 0.6640 | 0.6817 | 0.6640 | 0.6403 | 0.7637 |
74
+ | 3.2407 | 1.75 | 650 | 1.1366 | 0.6869 | 0.7098 | 0.6869 | 0.6628 | 0.7799 |
75
+ | 3.2407 | 1.89 | 700 | 0.9917 | 0.7382 | 0.7498 | 0.7382 | 0.7264 | 0.8174 |
76
+ | 1.6581 | 2.02 | 750 | 0.9604 | 0.7355 | 0.7688 | 0.7355 | 0.7248 | 0.8144 |
77
+ | 1.6581 | 2.16 | 800 | 0.8836 | 0.7679 | 0.7816 | 0.7679 | 0.7596 | 0.8391 |
78
+ | 1.6581 | 2.29 | 850 | 0.8232 | 0.7787 | 0.8122 | 0.7787 | 0.7725 | 0.8463 |
79
+ | 1.6581 | 2.43 | 900 | 0.7861 | 0.7800 | 0.8017 | 0.7800 | 0.7711 | 0.8467 |
80
+ | 1.6581 | 2.56 | 950 | 0.7454 | 0.8030 | 0.8288 | 0.8030 | 0.7955 | 0.8632 |
81
+ | 1.6581 | 2.7 | 1000 | 0.6824 | 0.8178 | 0.8450 | 0.8178 | 0.8135 | 0.8726 |
82
+ | 1.6581 | 2.83 | 1050 | 0.7187 | 0.8138 | 0.8429 | 0.8138 | 0.8116 | 0.8714 |
83
+ | 1.6581 | 2.96 | 1100 | 0.7004 | 0.8084 | 0.8280 | 0.8084 | 0.8041 | 0.8675 |
84
+ | 0.9905 | 3.1 | 1150 | 0.6490 | 0.8219 | 0.8390 | 0.8219 | 0.8176 | 0.8771 |
85
+ | 0.9905 | 3.23 | 1200 | 0.6872 | 0.8178 | 0.8328 | 0.8178 | 0.8154 | 0.8737 |
86
+ | 0.9905 | 3.37 | 1250 | 0.6676 | 0.8340 | 0.8548 | 0.8340 | 0.8270 | 0.8850 |
87
+ | 0.9905 | 3.5 | 1300 | 0.6439 | 0.8205 | 0.8480 | 0.8205 | 0.8212 | 0.8750 |
88
+ | 0.9905 | 3.64 | 1350 | 0.5648 | 0.8354 | 0.8527 | 0.8354 | 0.8319 | 0.8854 |
89
+ | 0.9905 | 3.77 | 1400 | 0.6231 | 0.8340 | 0.8537 | 0.8340 | 0.8310 | 0.8854 |
90
+ | 0.9905 | 3.91 | 1450 | 0.6813 | 0.8232 | 0.8532 | 0.8232 | 0.8219 | 0.8779 |
91
+ | 0.7084 | 4.04 | 1500 | 0.6047 | 0.8475 | 0.8680 | 0.8475 | 0.8459 | 0.8941 |
92
+ | 0.7084 | 4.18 | 1550 | 0.6319 | 0.8354 | 0.8489 | 0.8354 | 0.8323 | 0.8869 |
93
+ | 0.7084 | 4.31 | 1600 | 0.5892 | 0.8650 | 0.8814 | 0.8650 | 0.8625 | 0.9066 |
94
+ | 0.7084 | 4.45 | 1650 | 0.5572 | 0.8650 | 0.8825 | 0.8650 | 0.8649 | 0.9066 |
95
+ | 0.7084 | 4.58 | 1700 | 0.6023 | 0.8556 | 0.8705 | 0.8556 | 0.8530 | 0.9005 |
96
+ | 0.7084 | 4.72 | 1750 | 0.5772 | 0.8489 | 0.8729 | 0.8489 | 0.8456 | 0.8953 |
97
+ | 0.7084 | 4.85 | 1800 | 0.6242 | 0.8435 | 0.8643 | 0.8435 | 0.8416 | 0.8920 |
98
+ | 0.7084 | 4.99 | 1850 | 0.5903 | 0.8421 | 0.8574 | 0.8421 | 0.8392 | 0.8906 |
99
+ | 0.5634 | 5.12 | 1900 | 0.6256 | 0.8475 | 0.8598 | 0.8475 | 0.8438 | 0.8949 |
100
+ | 0.5634 | 5.26 | 1950 | 0.5891 | 0.8556 | 0.8728 | 0.8556 | 0.8553 | 0.9005 |
101
+ | 0.5634 | 5.39 | 2000 | 0.5435 | 0.8704 | 0.8843 | 0.8704 | 0.8681 | 0.9100 |
102
+ | 0.5634 | 5.53 | 2050 | 0.5093 | 0.8853 | 0.8952 | 0.8853 | 0.8840 | 0.9204 |
103
+ | 0.5634 | 5.66 | 2100 | 0.6058 | 0.8677 | 0.8784 | 0.8677 | 0.8676 | 0.9086 |
104
+ | 0.5634 | 5.8 | 2150 | 0.5635 | 0.8610 | 0.8728 | 0.8610 | 0.8607 | 0.9040 |
105
+ | 0.5634 | 5.93 | 2200 | 0.5897 | 0.8664 | 0.8828 | 0.8664 | 0.8661 | 0.9077 |
106
+ | 0.466 | 6.06 | 2250 | 0.6280 | 0.8623 | 0.8830 | 0.8623 | 0.8612 | 0.9058 |
107
+ | 0.466 | 6.2 | 2300 | 0.7129 | 0.8394 | 0.8548 | 0.8394 | 0.8371 | 0.8888 |
108
+ | 0.466 | 6.33 | 2350 | 0.6993 | 0.8435 | 0.8606 | 0.8435 | 0.8408 | 0.8926 |
109
+ | 0.466 | 6.47 | 2400 | 0.6314 | 0.8462 | 0.8630 | 0.8462 | 0.8440 | 0.8934 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.38.2
115
+ - Pytorch 2.3.0
116
+ - Datasets 2.19.1
117
+ - Tokenizers 0.15.1
runs/Jul08_21-10-52_LAPTOP-1GID9RGH/events.out.tfevents.1720447853.LAPTOP-1GID9RGH.8944.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24ba9596649697a1dbb0c3af87895bbec7bd1ff4a7185ea1afaaa8821b6ecbe3
3
- size 30994
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2cb8bc914c2e3510abb58bed23b7b9b43980fe0121ac65a190f17c0593feeb3
3
+ size 35946
runs/Jul08_21-10-52_LAPTOP-1GID9RGH/events.out.tfevents.1720449399.LAPTOP-1GID9RGH.8944.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07203edd9d0bd7ce329a9af551d21fd11ad89e2324f3de17669195bc03067af9
3
+ size 610