update model card README.md
Browse files
README.md
CHANGED
@@ -15,8 +15,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model was trained from scratch on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss:
|
19 |
-
- Accuracy: 0.
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -35,142 +35,108 @@ More information needed
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
-
- learning_rate:
|
39 |
-
- train_batch_size:
|
40 |
-
- eval_batch_size:
|
41 |
- seed: 42
|
42 |
-
- gradient_accumulation_steps:
|
43 |
-
- total_train_batch_size:
|
44 |
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
45 |
-
- lr_scheduler_type:
|
46 |
- lr_scheduler_warmup_steps: 50
|
47 |
-
- num_epochs:
|
|
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
|
|
103 |
-
|
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
122 |
-
|
|
123 |
-
|
|
124 |
-
|
|
125 |
-
|
|
126 |
-
|
|
127 |
-
|
|
128 |
-
|
|
129 |
-
|
|
130 |
-
|
|
131 |
-
|
|
132 |
-
|
|
133 |
-
|
|
134 |
-
|
|
135 |
-
|
|
136 |
-
|
|
137 |
-
|
|
138 |
-
|
|
139 |
-
| 6.5556 | 22.42 | 4350 | 6.5619 | 0.1315 |
|
140 |
-
| 6.4946 | 22.68 | 4400 | 6.5589 | 0.1314 |
|
141 |
-
| 6.5212 | 22.93 | 4450 | 6.5593 | 0.1318 |
|
142 |
-
| 6.5055 | 23.2 | 4500 | 6.5552 | 0.1311 |
|
143 |
-
| 6.4693 | 23.45 | 4550 | 6.5481 | 0.1325 |
|
144 |
-
| 6.4706 | 23.71 | 4600 | 6.5469 | 0.1317 |
|
145 |
-
| 6.495 | 23.97 | 4650 | 6.5462 | 0.1324 |
|
146 |
-
| 6.4901 | 24.23 | 4700 | 6.5414 | 0.1328 |
|
147 |
-
| 6.4936 | 24.48 | 4750 | 6.5385 | 0.1334 |
|
148 |
-
| 6.481 | 24.74 | 4800 | 6.5362 | 0.1331 |
|
149 |
-
| 6.5186 | 25.0 | 4850 | 6.5357 | 0.1335 |
|
150 |
-
| 6.4711 | 25.26 | 4900 | 6.5309 | 0.1339 |
|
151 |
-
| 6.4513 | 25.51 | 4950 | 6.5284 | 0.1337 |
|
152 |
-
| 6.4652 | 25.77 | 5000 | 6.5242 | 0.1343 |
|
153 |
-
| 6.9335 | 26.03 | 5050 | 6.5217 | 0.1345 |
|
154 |
-
| 6.4747 | 26.29 | 5100 | 6.5206 | 0.1345 |
|
155 |
-
| 6.4702 | 26.54 | 5150 | 6.5201 | 0.1350 |
|
156 |
-
| 6.4524 | 26.8 | 5200 | 6.5156 | 0.1352 |
|
157 |
-
| 6.4225 | 27.06 | 5250 | 6.5150 | 0.1349 |
|
158 |
-
| 6.4599 | 27.32 | 5300 | 6.5116 | 0.1355 |
|
159 |
-
| 6.4591 | 27.58 | 5350 | 6.5098 | 0.1358 |
|
160 |
-
| 6.4184 | 27.83 | 5400 | 6.5096 | 0.1353 |
|
161 |
-
| 6.43 | 28.09 | 5450 | 6.5074 | 0.1361 |
|
162 |
-
| 6.4604 | 28.35 | 5500 | 6.4999 | 0.1367 |
|
163 |
-
| 6.4593 | 28.61 | 5550 | 6.4994 | 0.1359 |
|
164 |
-
| 6.4648 | 28.86 | 5600 | 6.4981 | 0.1356 |
|
165 |
-
| 6.4453 | 29.12 | 5650 | 6.4949 | 0.1374 |
|
166 |
-
| 6.4275 | 29.38 | 5700 | 6.4954 | 0.1362 |
|
167 |
-
| 6.4165 | 29.64 | 5750 | 6.4938 | 0.1369 |
|
168 |
-
| 6.4211 | 29.89 | 5800 | 6.4911 | 0.1376 |
|
169 |
-
| 6.4188 | 30.15 | 5850 | 6.4860 | 0.1374 |
|
170 |
-
| 6.4337 | 30.41 | 5900 | 6.4807 | 0.1380 |
|
171 |
-
| 6.4228 | 30.67 | 5950 | 6.4876 | 0.1375 |
|
172 |
-
| 6.3841 | 30.92 | 6000 | 6.4811 | 0.1376 |
|
173 |
-
| 6.4383 | 31.18 | 6050 | 6.4832 | 0.1379 |
|
174 |
|
175 |
|
176 |
### Framework versions
|
|
|
15 |
|
16 |
This model was trained from scratch on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.7398
|
19 |
+
- Accuracy: 0.5144
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0004
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 32
|
41 |
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 32
|
43 |
+
- total_train_batch_size: 512
|
44 |
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: cosine
|
46 |
- lr_scheduler_warmup_steps: 50
|
47 |
+
- num_epochs: 100.0
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 7.8031 | 1.04 | 50 | 7.3560 | 0.0606 |
|
55 |
+
| 7.1948 | 2.08 | 100 | 6.7374 | 0.1182 |
|
56 |
+
| 6.8927 | 3.12 | 150 | 6.5022 | 0.1415 |
|
57 |
+
| 6.7339 | 4.16 | 200 | 6.4005 | 0.1483 |
|
58 |
+
| 6.6609 | 5.21 | 250 | 6.3535 | 0.1510 |
|
59 |
+
| 6.1972 | 6.25 | 300 | 6.3324 | 0.1519 |
|
60 |
+
| 6.1685 | 7.29 | 350 | 6.3029 | 0.1528 |
|
61 |
+
| 6.1302 | 8.33 | 400 | 6.2828 | 0.1521 |
|
62 |
+
| 6.093 | 9.37 | 450 | 6.2568 | 0.1536 |
|
63 |
+
| 6.0543 | 10.41 | 500 | 6.2430 | 0.1544 |
|
64 |
+
| 6.0479 | 11.45 | 550 | 6.2346 | 0.1541 |
|
65 |
+
| 6.0372 | 12.49 | 600 | 6.2232 | 0.1546 |
|
66 |
+
| 6.0127 | 13.53 | 650 | 6.2139 | 0.1541 |
|
67 |
+
| 5.968 | 14.58 | 700 | 6.2053 | 0.1547 |
|
68 |
+
| 5.9635 | 15.62 | 750 | 6.1996 | 0.1549 |
|
69 |
+
| 5.9479 | 16.66 | 800 | 6.1953 | 0.1548 |
|
70 |
+
| 5.9371 | 17.7 | 850 | 6.1887 | 0.1545 |
|
71 |
+
| 5.9046 | 18.74 | 900 | 6.1613 | 0.1545 |
|
72 |
+
| 5.8368 | 19.78 | 950 | 6.0952 | 0.1557 |
|
73 |
+
| 5.7914 | 20.82 | 1000 | 6.0330 | 0.1569 |
|
74 |
+
| 5.7026 | 21.86 | 1050 | 5.9430 | 0.1612 |
|
75 |
+
| 5.491 | 22.9 | 1100 | 5.6100 | 0.1974 |
|
76 |
+
| 4.9289 | 23.95 | 1150 | 4.9607 | 0.2702 |
|
77 |
+
| 4.5214 | 24.99 | 1200 | 4.5795 | 0.3051 |
|
78 |
+
| 4.5663 | 26.04 | 1250 | 4.3454 | 0.3265 |
|
79 |
+
| 4.3717 | 27.08 | 1300 | 4.1738 | 0.3412 |
|
80 |
+
| 4.1483 | 28.12 | 1350 | 4.0336 | 0.3555 |
|
81 |
+
| 3.9988 | 29.16 | 1400 | 3.9180 | 0.3677 |
|
82 |
+
| 3.8695 | 30.21 | 1450 | 3.8108 | 0.3782 |
|
83 |
+
| 3.5017 | 31.25 | 1500 | 3.7240 | 0.3879 |
|
84 |
+
| 3.4311 | 32.29 | 1550 | 3.6426 | 0.3974 |
|
85 |
+
| 3.3517 | 33.33 | 1600 | 3.5615 | 0.4068 |
|
86 |
+
| 3.2856 | 34.37 | 1650 | 3.4915 | 0.4156 |
|
87 |
+
| 3.227 | 35.41 | 1700 | 3.4179 | 0.4255 |
|
88 |
+
| 3.1675 | 36.45 | 1750 | 3.3636 | 0.4325 |
|
89 |
+
| 3.0908 | 37.49 | 1800 | 3.3083 | 0.4394 |
|
90 |
+
| 3.0561 | 38.53 | 1850 | 3.2572 | 0.4473 |
|
91 |
+
| 3.0139 | 39.58 | 1900 | 3.2159 | 0.4525 |
|
92 |
+
| 2.9837 | 40.62 | 1950 | 3.1789 | 0.4575 |
|
93 |
+
| 2.9387 | 41.66 | 2000 | 3.1431 | 0.4618 |
|
94 |
+
| 2.9034 | 42.7 | 2050 | 3.1163 | 0.4654 |
|
95 |
+
| 2.8822 | 43.74 | 2100 | 3.0842 | 0.4694 |
|
96 |
+
| 2.836 | 44.78 | 2150 | 3.0583 | 0.4727 |
|
97 |
+
| 2.8129 | 45.82 | 2200 | 3.0359 | 0.4760 |
|
98 |
+
| 2.7733 | 46.86 | 2250 | 3.0173 | 0.4776 |
|
99 |
+
| 2.7589 | 47.9 | 2300 | 2.9978 | 0.4812 |
|
100 |
+
| 2.7378 | 48.95 | 2350 | 2.9788 | 0.4831 |
|
101 |
+
| 2.7138 | 49.99 | 2400 | 2.9674 | 0.4844 |
|
102 |
+
| 2.8692 | 51.04 | 2450 | 2.9476 | 0.4874 |
|
103 |
+
| 2.8462 | 52.08 | 2500 | 2.9342 | 0.4893 |
|
104 |
+
| 2.8312 | 53.12 | 2550 | 2.9269 | 0.4900 |
|
105 |
+
| 2.7834 | 54.16 | 2600 | 2.9111 | 0.4917 |
|
106 |
+
| 2.7822 | 55.21 | 2650 | 2.8987 | 0.4934 |
|
107 |
+
| 2.584 | 56.25 | 2700 | 2.8844 | 0.4949 |
|
108 |
+
| 2.5668 | 57.29 | 2750 | 2.8808 | 0.4965 |
|
109 |
+
| 2.5536 | 58.33 | 2800 | 2.8640 | 0.4982 |
|
110 |
+
| 2.5403 | 59.37 | 2850 | 2.8606 | 0.4982 |
|
111 |
+
| 2.5294 | 60.41 | 2900 | 2.8441 | 0.5008 |
|
112 |
+
| 2.513 | 61.45 | 2950 | 2.8402 | 0.5013 |
|
113 |
+
| 2.5105 | 62.49 | 3000 | 2.8316 | 0.5022 |
|
114 |
+
| 2.4897 | 63.53 | 3050 | 2.8237 | 0.5027 |
|
115 |
+
| 2.4974 | 64.58 | 3100 | 2.8187 | 0.5040 |
|
116 |
+
| 2.4799 | 65.62 | 3150 | 2.8129 | 0.5044 |
|
117 |
+
| 2.4741 | 66.66 | 3200 | 2.8056 | 0.5057 |
|
118 |
+
| 2.4582 | 67.7 | 3250 | 2.8025 | 0.5061 |
|
119 |
+
| 2.4389 | 68.74 | 3300 | 2.7913 | 0.5076 |
|
120 |
+
| 2.4539 | 69.78 | 3350 | 2.7881 | 0.5072 |
|
121 |
+
| 2.4252 | 70.82 | 3400 | 2.7884 | 0.5082 |
|
122 |
+
| 2.4287 | 71.86 | 3450 | 2.7784 | 0.5093 |
|
123 |
+
| 2.4131 | 72.9 | 3500 | 2.7782 | 0.5099 |
|
124 |
+
| 2.4016 | 73.95 | 3550 | 2.7724 | 0.5098 |
|
125 |
+
| 2.3998 | 74.99 | 3600 | 2.7659 | 0.5111 |
|
126 |
+
| 2.5475 | 76.04 | 3650 | 2.7650 | 0.5108 |
|
127 |
+
| 2.5443 | 77.08 | 3700 | 2.7620 | 0.5117 |
|
128 |
+
| 2.5381 | 78.12 | 3750 | 2.7631 | 0.5115 |
|
129 |
+
| 2.5269 | 79.16 | 3800 | 2.7578 | 0.5122 |
|
130 |
+
| 2.5288 | 80.21 | 3850 | 2.7540 | 0.5124 |
|
131 |
+
| 2.3669 | 81.25 | 3900 | 2.7529 | 0.5125 |
|
132 |
+
| 2.3631 | 82.29 | 3950 | 2.7498 | 0.5132 |
|
133 |
+
| 2.3499 | 83.33 | 4000 | 2.7454 | 0.5136 |
|
134 |
+
| 2.3726 | 84.37 | 4050 | 2.7446 | 0.5141 |
|
135 |
+
| 2.3411 | 85.41 | 4100 | 2.7403 | 0.5144 |
|
136 |
+
| 2.3321 | 86.45 | 4150 | 2.7372 | 0.5146 |
|
137 |
+
| 2.3456 | 87.49 | 4200 | 2.7389 | 0.5146 |
|
138 |
+
| 2.3372 | 88.53 | 4250 | 2.7384 | 0.5151 |
|
139 |
+
| 2.343 | 89.58 | 4300 | 2.7398 | 0.5144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
|
142 |
### Framework versions
|