--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-tiny-4l-10M results: [] --- # roberta-tiny-4l-10M This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.3440 - Accuracy: 0.0513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.4785 | 4.16 | 50 | 7.3834 | 0.0514 | | 7.425 | 8.33 | 100 | 7.3559 | 0.0514 | | 7.4187 | 12.49 | 150 | 7.3517 | 0.0512 | | 7.4204 | 16.66 | 200 | 7.3440 | 0.0514 | | 7.4099 | 20.82 | 250 | 7.3454 | 0.0515 | | 7.2916 | 24.99 | 300 | 7.3442 | 0.0515 | | 7.4117 | 29.16 | 350 | 7.3440 | 0.0513 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1