--- library_name: transformers tags: - generated_from_trainer - trl - sft base_model: HuggingFaceTB/SmolLM-1.7B-Instruct datasets: gabrielmbmb/ifeval-trl model_name: SmolLM-1.7B-Instruct-IFEval licence: license model-index: - name: SmolLM-1.7B-Instruct-IFEval results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 23.06 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 4.5 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.45 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 1.6 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.73 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval name: Open LLM Leaderboard --- # Model Card for SmolLM-1.7B-Instruct-IFEval This model is a fine-tuned version of [HuggingFaceTB/SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct) on the [gabrielmbmb/ifeval-trl](https://huggingface.co/datasets/gabrielmbmb/ifeval-trl) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="gabrielmbmb/SmolLM-1.7B-Instruct-IFEval", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [Visualize in Weights & Biases](https://wandb.ai/gabrielmbmb/huggingface/runs/1fz7wyq7) This model was trained with SFT. ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.1 - Pytorch: 2.4.1 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gabrielmbmb__SmolLM-1.7B-Instruct-IFEval) | Metric |Value| |-------------------|----:| |Avg. | 5.22| |IFEval (0-Shot) |23.06| |BBH (3-Shot) | 4.50| |MATH Lvl 5 (4-Shot)| 0.00| |GPQA (0-shot) | 0.45| |MuSR (0-shot) | 1.60| |MMLU-PRO (5-shot) | 1.73|