--- library_name: peft base_model: HuggingFaceTB/smollm2-1.7B-8k-mix7-ep2-v2 tags: - alignment-handbook - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1-dpo results: [] --- # smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1-dpo This model is a fine-tuned version of [gabrielmbmb/smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1](https://huggingface.co/gabrielmbmb/smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5156 - Rewards/chosen: -4.3948 - Rewards/rejected: -5.4305 - Rewards/accuracies: 0.7656 - Rewards/margins: 1.0357 - Logps/rejected: -849.2994 - Logps/chosen: -752.2209 - Logits/rejected: -1.2614 - Logits/chosen: -1.2341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5629 | 0.2093 | 100 | 0.5765 | -2.2363 | -2.7515 | 0.7227 | 0.5152 | -581.3958 | -536.3666 | -1.6836 | -1.6572 | | 0.5499 | 0.4186 | 200 | 0.5310 | -3.6681 | -4.4704 | 0.7734 | 0.8022 | -753.2846 | -679.5535 | -0.8209 | -0.8334 | | 0.511 | 0.6279 | 300 | 0.5225 | -4.8153 | -5.7685 | 0.7695 | 0.9532 | -883.0991 | -794.2732 | -1.1394 | -1.1157 | | 0.508 | 0.8373 | 400 | 0.5157 | -4.3456 | -5.3593 | 0.7695 | 1.0137 | -842.1772 | -747.2964 | -1.2109 | -1.1871 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.0 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1