abdouaziiz commited on
Commit
fe748eb
1 Parent(s): c035fdd

Upload 6 files

Browse files
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - audio-classification
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - f1
10
+ model-index:
11
+ - name: wav2vec2-large
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # wav2vec2-large
19
+
20
+ This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the galsenai/waxal_dataset dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3413
23
+ - Accuracy: 0.9443
24
+ - Precision: 0.9780
25
+ - F1: 0.9604
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 12
46
+ - eval_batch_size: 12
47
+ - seed: 0
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 48
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 32.0
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|
59
+ | 4.6314 | 1.01 | 500 | 4.9165 | 0.0205 | 0.0028 | 0.0049 |
60
+ | 3.7739 | 2.02 | 1000 | 4.4491 | 0.0356 | 0.0750 | 0.0252 |
61
+ | 2.5035 | 3.04 | 1500 | 4.1429 | 0.1129 | 0.2672 | 0.1114 |
62
+ | 1.5633 | 4.05 | 2000 | 3.1973 | 0.3676 | 0.6598 | 0.3830 |
63
+ | 1.0538 | 5.06 | 2500 | 2.5479 | 0.5889 | 0.8417 | 0.6557 |
64
+ | 0.7422 | 6.07 | 3000 | 1.4494 | 0.7825 | 0.8921 | 0.8194 |
65
+ | 0.5762 | 7.08 | 3500 | 1.3168 | 0.7726 | 0.9277 | 0.8267 |
66
+ | 0.46 | 8.1 | 4000 | 0.8783 | 0.8564 | 0.9532 | 0.8982 |
67
+ | 0.4007 | 9.11 | 4500 | 0.7524 | 0.8738 | 0.9637 | 0.9137 |
68
+ | 0.3374 | 10.12 | 5000 | 0.6386 | 0.8852 | 0.9678 | 0.9221 |
69
+ | 0.3108 | 11.13 | 5500 | 0.5049 | 0.9106 | 0.9681 | 0.9373 |
70
+ | 0.2735 | 12.15 | 6000 | 0.6097 | 0.8905 | 0.9624 | 0.9226 |
71
+ | 0.2716 | 13.16 | 6500 | 0.4543 | 0.9000 | 0.9569 | 0.9206 |
72
+ | 0.2484 | 14.17 | 7000 | 0.3965 | 0.9272 | 0.9742 | 0.9489 |
73
+ | 0.228 | 15.18 | 7500 | 0.6807 | 0.8856 | 0.9777 | 0.9257 |
74
+ | 0.2307 | 16.19 | 8000 | 0.5219 | 0.9174 | 0.9802 | 0.9464 |
75
+ | 0.2169 | 17.21 | 8500 | 0.4630 | 0.9121 | 0.9677 | 0.9338 |
76
+ | 0.1997 | 18.22 | 9000 | 0.5152 | 0.9128 | 0.9740 | 0.9398 |
77
+ | 0.1921 | 19.23 | 9500 | 0.5105 | 0.9144 | 0.9867 | 0.9476 |
78
+ | 0.1825 | 20.24 | 10000 | 0.6302 | 0.9053 | 0.9832 | 0.9407 |
79
+ | 0.1786 | 21.25 | 10500 | 0.4602 | 0.9272 | 0.9813 | 0.9524 |
80
+ | 0.1671 | 22.27 | 11000 | 0.5443 | 0.9147 | 0.9794 | 0.9444 |
81
+ | 0.1623 | 23.28 | 11500 | 0.3413 | 0.9443 | 0.9780 | 0.9604 |
82
+ | 0.1595 | 24.29 | 12000 | 0.4478 | 0.9288 | 0.9813 | 0.9531 |
83
+ | 0.151 | 25.3 | 12500 | 0.4178 | 0.9360 | 0.9818 | 0.9571 |
84
+ | 0.1472 | 26.32 | 13000 | 0.4154 | 0.9356 | 0.9833 | 0.9578 |
85
+ | 0.1473 | 27.33 | 13500 | 0.4549 | 0.9318 | 0.9837 | 0.9561 |
86
+ | 0.131 | 28.34 | 14000 | 0.3574 | 0.9424 | 0.9845 | 0.9621 |
87
+ | 0.134 | 29.35 | 14500 | 0.4475 | 0.9333 | 0.9840 | 0.9568 |
88
+ | 0.1282 | 30.36 | 15000 | 0.4012 | 0.9382 | 0.9837 | 0.9591 |
89
+ | 0.1307 | 31.38 | 15500 | 0.3552 | 0.9428 | 0.9847 | 0.9624 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.27.0.dev0
95
+ - Pytorch 1.11.0+cu113
96
+ - Datasets 2.9.1.dev0
97
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "eval_accuracy": 0.9442970822281167,
4
+ "eval_f1": 0.9604353051727885,
5
+ "eval_loss": 0.3412924110889435,
6
+ "eval_precision": 0.9780145058039889,
7
+ "eval_runtime": 120.0249,
8
+ "eval_samples_per_second": 21.987,
9
+ "eval_steps_per_second": 1.833,
10
+ "train_loss": 0.6361874522950485,
11
+ "train_runtime": 48273.5986,
12
+ "train_samples_per_second": 15.742,
13
+ "train_steps_per_second": 0.327
14
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "eval_accuracy": 0.9442970822281167,
4
+ "eval_f1": 0.9604353051727885,
5
+ "eval_loss": 0.3412924110889435,
6
+ "eval_precision": 0.9780145058039889,
7
+ "eval_runtime": 120.0249,
8
+ "eval_samples_per_second": 21.987,
9
+ "eval_steps_per_second": 1.833
10
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "train_loss": 0.6361874522950485,
4
+ "train_runtime": 48273.5986,
5
+ "train_samples_per_second": 15.742,
6
+ "train_steps_per_second": 0.327
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9442970822281167,
3
+ "best_model_checkpoint": "wav2vec2-large/checkpoint-11500",
4
+ "epoch": 31.998484082870135,
5
+ "global_step": 15808,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.01,
12
+ "learning_rate": 9.487666034155598e-06,
13
+ "loss": 4.6314,
14
+ "step": 500
15
+ },
16
+ {
17
+ "epoch": 1.01,
18
+ "eval_accuracy": 0.02046229632436529,
19
+ "eval_f1": 0.004873418863566646,
20
+ "eval_loss": 4.916522026062012,
21
+ "eval_precision": 0.0027763277100147127,
22
+ "eval_runtime": 123.5513,
23
+ "eval_samples_per_second": 21.36,
24
+ "eval_steps_per_second": 1.781,
25
+ "step": 500
26
+ },
27
+ {
28
+ "epoch": 2.02,
29
+ "learning_rate": 1.8975332068311197e-05,
30
+ "loss": 3.7739,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 2.02,
35
+ "eval_accuracy": 0.03561955286093217,
36
+ "eval_f1": 0.02524670069279936,
37
+ "eval_loss": 4.449059009552002,
38
+ "eval_precision": 0.0750288473053048,
39
+ "eval_runtime": 121.7021,
40
+ "eval_samples_per_second": 21.684,
41
+ "eval_steps_per_second": 1.808,
42
+ "step": 1000
43
+ },
44
+ {
45
+ "epoch": 3.04,
46
+ "learning_rate": 2.846299810246679e-05,
47
+ "loss": 2.5035,
48
+ "step": 1500
49
+ },
50
+ {
51
+ "epoch": 3.04,
52
+ "eval_accuracy": 0.11292156119742326,
53
+ "eval_f1": 0.11144842685774854,
54
+ "eval_loss": 4.142854690551758,
55
+ "eval_precision": 0.2671650922898445,
56
+ "eval_runtime": 120.9962,
57
+ "eval_samples_per_second": 21.811,
58
+ "eval_steps_per_second": 1.818,
59
+ "step": 1500
60
+ },
61
+ {
62
+ "epoch": 4.05,
63
+ "learning_rate": 2.9116468686300697e-05,
64
+ "loss": 1.5633,
65
+ "step": 2000
66
+ },
67
+ {
68
+ "epoch": 4.05,
69
+ "eval_accuracy": 0.36756347101174686,
70
+ "eval_f1": 0.3830364851222239,
71
+ "eval_loss": 3.1973092555999756,
72
+ "eval_precision": 0.6598356853987439,
73
+ "eval_runtime": 122.0663,
74
+ "eval_samples_per_second": 21.619,
75
+ "eval_steps_per_second": 1.802,
76
+ "step": 2000
77
+ },
78
+ {
79
+ "epoch": 5.06,
80
+ "learning_rate": 2.8062135376396992e-05,
81
+ "loss": 1.0538,
82
+ "step": 2500
83
+ },
84
+ {
85
+ "epoch": 5.06,
86
+ "eval_accuracy": 0.5888594164456233,
87
+ "eval_f1": 0.6556643570555963,
88
+ "eval_loss": 2.5479371547698975,
89
+ "eval_precision": 0.8416636658887603,
90
+ "eval_runtime": 121.3195,
91
+ "eval_samples_per_second": 21.752,
92
+ "eval_steps_per_second": 1.813,
93
+ "step": 2500
94
+ },
95
+ {
96
+ "epoch": 6.07,
97
+ "learning_rate": 2.700780206649329e-05,
98
+ "loss": 0.7422,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 6.07,
103
+ "eval_accuracy": 0.7824933687002652,
104
+ "eval_f1": 0.8194352733059617,
105
+ "eval_loss": 1.4494293928146362,
106
+ "eval_precision": 0.8920845853165854,
107
+ "eval_runtime": 120.4455,
108
+ "eval_samples_per_second": 21.91,
109
+ "eval_steps_per_second": 1.827,
110
+ "step": 3000
111
+ },
112
+ {
113
+ "epoch": 7.08,
114
+ "learning_rate": 2.5953468756589585e-05,
115
+ "loss": 0.5762,
116
+ "step": 3500
117
+ },
118
+ {
119
+ "epoch": 7.08,
120
+ "eval_accuracy": 0.7726411519514967,
121
+ "eval_f1": 0.8267111468977018,
122
+ "eval_loss": 1.316819190979004,
123
+ "eval_precision": 0.9277444722087854,
124
+ "eval_runtime": 122.3892,
125
+ "eval_samples_per_second": 21.562,
126
+ "eval_steps_per_second": 1.798,
127
+ "step": 3500
128
+ },
129
+ {
130
+ "epoch": 8.1,
131
+ "learning_rate": 2.489913544668588e-05,
132
+ "loss": 0.46,
133
+ "step": 4000
134
+ },
135
+ {
136
+ "epoch": 8.1,
137
+ "eval_accuracy": 0.8563849943160288,
138
+ "eval_f1": 0.898213371629901,
139
+ "eval_loss": 0.8782555460929871,
140
+ "eval_precision": 0.9531998814815654,
141
+ "eval_runtime": 120.9059,
142
+ "eval_samples_per_second": 21.827,
143
+ "eval_steps_per_second": 1.82,
144
+ "step": 4000
145
+ },
146
+ {
147
+ "epoch": 9.11,
148
+ "learning_rate": 2.3844802136782175e-05,
149
+ "loss": 0.4007,
150
+ "step": 4500
151
+ },
152
+ {
153
+ "epoch": 9.11,
154
+ "eval_accuracy": 0.8738158393330807,
155
+ "eval_f1": 0.913683470937564,
156
+ "eval_loss": 0.752358615398407,
157
+ "eval_precision": 0.9636991964706034,
158
+ "eval_runtime": 120.9904,
159
+ "eval_samples_per_second": 21.812,
160
+ "eval_steps_per_second": 1.818,
161
+ "step": 4500
162
+ },
163
+ {
164
+ "epoch": 10.12,
165
+ "learning_rate": 2.279046882687847e-05,
166
+ "loss": 0.3374,
167
+ "step": 5000
168
+ },
169
+ {
170
+ "epoch": 10.12,
171
+ "eval_accuracy": 0.8851837817355058,
172
+ "eval_f1": 0.9220598204792498,
173
+ "eval_loss": 0.6385864615440369,
174
+ "eval_precision": 0.9677694535212527,
175
+ "eval_runtime": 120.467,
176
+ "eval_samples_per_second": 21.906,
177
+ "eval_steps_per_second": 1.826,
178
+ "step": 5000
179
+ },
180
+ {
181
+ "epoch": 11.13,
182
+ "learning_rate": 2.1736135516974768e-05,
183
+ "loss": 0.3108,
184
+ "step": 5500
185
+ },
186
+ {
187
+ "epoch": 11.13,
188
+ "eval_accuracy": 0.9105721864342554,
189
+ "eval_f1": 0.9372909559856852,
190
+ "eval_loss": 0.5049420595169067,
191
+ "eval_precision": 0.9680582892579286,
192
+ "eval_runtime": 121.8653,
193
+ "eval_samples_per_second": 21.655,
194
+ "eval_steps_per_second": 1.805,
195
+ "step": 5500
196
+ },
197
+ {
198
+ "epoch": 12.15,
199
+ "learning_rate": 2.0681802207071063e-05,
200
+ "loss": 0.2735,
201
+ "step": 6000
202
+ },
203
+ {
204
+ "epoch": 12.15,
205
+ "eval_accuracy": 0.8904888215233043,
206
+ "eval_f1": 0.9225848099506897,
207
+ "eval_loss": 0.6096966862678528,
208
+ "eval_precision": 0.9623634379449385,
209
+ "eval_runtime": 121.4949,
210
+ "eval_samples_per_second": 21.721,
211
+ "eval_steps_per_second": 1.811,
212
+ "step": 6000
213
+ },
214
+ {
215
+ "epoch": 13.16,
216
+ "learning_rate": 1.9627468897167357e-05,
217
+ "loss": 0.2716,
218
+ "step": 6500
219
+ },
220
+ {
221
+ "epoch": 13.16,
222
+ "eval_accuracy": 0.8999621068586586,
223
+ "eval_f1": 0.9206365230401724,
224
+ "eval_loss": 0.4542546570301056,
225
+ "eval_precision": 0.9569343688614892,
226
+ "eval_runtime": 120.692,
227
+ "eval_samples_per_second": 21.866,
228
+ "eval_steps_per_second": 1.823,
229
+ "step": 6500
230
+ },
231
+ {
232
+ "epoch": 14.17,
233
+ "learning_rate": 1.8573135587263652e-05,
234
+ "loss": 0.2484,
235
+ "step": 7000
236
+ },
237
+ {
238
+ "epoch": 14.17,
239
+ "eval_accuracy": 0.9272451686244789,
240
+ "eval_f1": 0.9489393378254958,
241
+ "eval_loss": 0.3964819610118866,
242
+ "eval_precision": 0.9742030978909282,
243
+ "eval_runtime": 121.4363,
244
+ "eval_samples_per_second": 21.732,
245
+ "eval_steps_per_second": 1.812,
246
+ "step": 7000
247
+ },
248
+ {
249
+ "epoch": 15.18,
250
+ "learning_rate": 1.751880227735995e-05,
251
+ "loss": 0.228,
252
+ "step": 7500
253
+ },
254
+ {
255
+ "epoch": 15.18,
256
+ "eval_accuracy": 0.8855627131489201,
257
+ "eval_f1": 0.9256828810141209,
258
+ "eval_loss": 0.6806507110595703,
259
+ "eval_precision": 0.9777330671722411,
260
+ "eval_runtime": 122.0415,
261
+ "eval_samples_per_second": 21.624,
262
+ "eval_steps_per_second": 1.803,
263
+ "step": 7500
264
+ },
265
+ {
266
+ "epoch": 16.19,
267
+ "learning_rate": 1.6464468967456245e-05,
268
+ "loss": 0.2307,
269
+ "step": 8000
270
+ },
271
+ {
272
+ "epoch": 16.19,
273
+ "eval_accuracy": 0.9173929518757105,
274
+ "eval_f1": 0.946436431649072,
275
+ "eval_loss": 0.5219454765319824,
276
+ "eval_precision": 0.9801938448683835,
277
+ "eval_runtime": 120.3841,
278
+ "eval_samples_per_second": 21.921,
279
+ "eval_steps_per_second": 1.827,
280
+ "step": 8000
281
+ },
282
+ {
283
+ "epoch": 17.21,
284
+ "learning_rate": 1.541013565755254e-05,
285
+ "loss": 0.2169,
286
+ "step": 8500
287
+ },
288
+ {
289
+ "epoch": 17.21,
290
+ "eval_accuracy": 0.9120879120879121,
291
+ "eval_f1": 0.9337616922587397,
292
+ "eval_loss": 0.4630146920681,
293
+ "eval_precision": 0.9677088927055834,
294
+ "eval_runtime": 121.7745,
295
+ "eval_samples_per_second": 21.671,
296
+ "eval_steps_per_second": 1.807,
297
+ "step": 8500
298
+ },
299
+ {
300
+ "epoch": 18.22,
301
+ "learning_rate": 1.4355802347648837e-05,
302
+ "loss": 0.1997,
303
+ "step": 9000
304
+ },
305
+ {
306
+ "epoch": 18.22,
307
+ "eval_accuracy": 0.9128457749147404,
308
+ "eval_f1": 0.9397548887949031,
309
+ "eval_loss": 0.5151729583740234,
310
+ "eval_precision": 0.9740319117972248,
311
+ "eval_runtime": 121.0656,
312
+ "eval_samples_per_second": 21.798,
313
+ "eval_steps_per_second": 1.817,
314
+ "step": 9000
315
+ },
316
+ {
317
+ "epoch": 19.23,
318
+ "learning_rate": 1.3301469037745133e-05,
319
+ "loss": 0.1921,
320
+ "step": 9500
321
+ },
322
+ {
323
+ "epoch": 19.23,
324
+ "eval_accuracy": 0.9143615005683972,
325
+ "eval_f1": 0.9475938884984938,
326
+ "eval_loss": 0.510482668876648,
327
+ "eval_precision": 0.9867250624910348,
328
+ "eval_runtime": 122.1644,
329
+ "eval_samples_per_second": 21.602,
330
+ "eval_steps_per_second": 1.801,
331
+ "step": 9500
332
+ },
333
+ {
334
+ "epoch": 20.24,
335
+ "learning_rate": 1.2247135727841428e-05,
336
+ "loss": 0.1825,
337
+ "step": 10000
338
+ },
339
+ {
340
+ "epoch": 20.24,
341
+ "eval_accuracy": 0.905267146646457,
342
+ "eval_f1": 0.9406773355537659,
343
+ "eval_loss": 0.6302403807640076,
344
+ "eval_precision": 0.9831536512710705,
345
+ "eval_runtime": 121.7536,
346
+ "eval_samples_per_second": 21.675,
347
+ "eval_steps_per_second": 1.807,
348
+ "step": 10000
349
+ },
350
+ {
351
+ "epoch": 21.25,
352
+ "learning_rate": 1.1192802417937724e-05,
353
+ "loss": 0.1786,
354
+ "step": 10500
355
+ },
356
+ {
357
+ "epoch": 21.25,
358
+ "eval_accuracy": 0.9272451686244789,
359
+ "eval_f1": 0.952370485075943,
360
+ "eval_loss": 0.460215300321579,
361
+ "eval_precision": 0.9813011833529409,
362
+ "eval_runtime": 124.2398,
363
+ "eval_samples_per_second": 21.241,
364
+ "eval_steps_per_second": 1.771,
365
+ "step": 10500
366
+ },
367
+ {
368
+ "epoch": 22.27,
369
+ "learning_rate": 1.013846910803402e-05,
370
+ "loss": 0.1671,
371
+ "step": 11000
372
+ },
373
+ {
374
+ "epoch": 22.27,
375
+ "eval_accuracy": 0.9147404319818113,
376
+ "eval_f1": 0.9444178129216141,
377
+ "eval_loss": 0.544323205947876,
378
+ "eval_precision": 0.9794231668433278,
379
+ "eval_runtime": 120.9552,
380
+ "eval_samples_per_second": 21.818,
381
+ "eval_steps_per_second": 1.819,
382
+ "step": 11000
383
+ },
384
+ {
385
+ "epoch": 23.28,
386
+ "learning_rate": 9.084135798130316e-06,
387
+ "loss": 0.1623,
388
+ "step": 11500
389
+ },
390
+ {
391
+ "epoch": 23.28,
392
+ "eval_accuracy": 0.9442970822281167,
393
+ "eval_f1": 0.9604353051727885,
394
+ "eval_loss": 0.3412924110889435,
395
+ "eval_precision": 0.9780145058039889,
396
+ "eval_runtime": 122.6656,
397
+ "eval_samples_per_second": 21.514,
398
+ "eval_steps_per_second": 1.793,
399
+ "step": 11500
400
+ },
401
+ {
402
+ "epoch": 24.29,
403
+ "learning_rate": 8.029802488226612e-06,
404
+ "loss": 0.1595,
405
+ "step": 12000
406
+ },
407
+ {
408
+ "epoch": 24.29,
409
+ "eval_accuracy": 0.9287608942781357,
410
+ "eval_f1": 0.9531334781334764,
411
+ "eval_loss": 0.44775113463401794,
412
+ "eval_precision": 0.9812894876888261,
413
+ "eval_runtime": 120.6582,
414
+ "eval_samples_per_second": 21.872,
415
+ "eval_steps_per_second": 1.823,
416
+ "step": 12000
417
+ },
418
+ {
419
+ "epoch": 25.3,
420
+ "learning_rate": 6.975469178322908e-06,
421
+ "loss": 0.151,
422
+ "step": 12500
423
+ },
424
+ {
425
+ "epoch": 25.3,
426
+ "eval_accuracy": 0.9359605911330049,
427
+ "eval_f1": 0.9571224982425287,
428
+ "eval_loss": 0.41782599687576294,
429
+ "eval_precision": 0.9818213438674759,
430
+ "eval_runtime": 121.5443,
431
+ "eval_samples_per_second": 21.712,
432
+ "eval_steps_per_second": 1.81,
433
+ "step": 12500
434
+ },
435
+ {
436
+ "epoch": 26.32,
437
+ "learning_rate": 5.9211358684192026e-06,
438
+ "loss": 0.1472,
439
+ "step": 13000
440
+ },
441
+ {
442
+ "epoch": 26.32,
443
+ "eval_accuracy": 0.9355816597195907,
444
+ "eval_f1": 0.9577691906088884,
445
+ "eval_loss": 0.41541919112205505,
446
+ "eval_precision": 0.9832631333451843,
447
+ "eval_runtime": 122.2041,
448
+ "eval_samples_per_second": 21.595,
449
+ "eval_steps_per_second": 1.8,
450
+ "step": 13000
451
+ },
452
+ {
453
+ "epoch": 27.33,
454
+ "learning_rate": 4.866802558515498e-06,
455
+ "loss": 0.1473,
456
+ "step": 13500
457
+ },
458
+ {
459
+ "epoch": 27.33,
460
+ "eval_accuracy": 0.931792345585449,
461
+ "eval_f1": 0.9560631584126075,
462
+ "eval_loss": 0.4548525810241699,
463
+ "eval_precision": 0.9837464944410116,
464
+ "eval_runtime": 121.1061,
465
+ "eval_samples_per_second": 21.791,
466
+ "eval_steps_per_second": 1.817,
467
+ "step": 13500
468
+ },
469
+ {
470
+ "epoch": 28.34,
471
+ "learning_rate": 3.8124692486117947e-06,
472
+ "loss": 0.131,
473
+ "step": 14000
474
+ },
475
+ {
476
+ "epoch": 28.34,
477
+ "eval_accuracy": 0.9424024251610459,
478
+ "eval_f1": 0.9620998995027674,
479
+ "eval_loss": 0.3574429154396057,
480
+ "eval_precision": 0.984478231442749,
481
+ "eval_runtime": 120.0382,
482
+ "eval_samples_per_second": 21.985,
483
+ "eval_steps_per_second": 1.833,
484
+ "step": 14000
485
+ },
486
+ {
487
+ "epoch": 29.35,
488
+ "learning_rate": 2.7581359387080904e-06,
489
+ "loss": 0.134,
490
+ "step": 14500
491
+ },
492
+ {
493
+ "epoch": 29.35,
494
+ "eval_accuracy": 0.9333080712391058,
495
+ "eval_f1": 0.9568214460159893,
496
+ "eval_loss": 0.4474771022796631,
497
+ "eval_precision": 0.9840495545740223,
498
+ "eval_runtime": 123.1013,
499
+ "eval_samples_per_second": 21.438,
500
+ "eval_steps_per_second": 1.787,
501
+ "step": 14500
502
+ },
503
+ {
504
+ "epoch": 30.36,
505
+ "learning_rate": 1.7038026288043862e-06,
506
+ "loss": 0.1282,
507
+ "step": 15000
508
+ },
509
+ {
510
+ "epoch": 30.36,
511
+ "eval_accuracy": 0.93823417961349,
512
+ "eval_f1": 0.959091295015073,
513
+ "eval_loss": 0.401244193315506,
514
+ "eval_precision": 0.9836786405574566,
515
+ "eval_runtime": 121.7667,
516
+ "eval_samples_per_second": 21.673,
517
+ "eval_steps_per_second": 1.807,
518
+ "step": 15000
519
+ },
520
+ {
521
+ "epoch": 31.38,
522
+ "learning_rate": 6.494693189006819e-07,
523
+ "loss": 0.1307,
524
+ "step": 15500
525
+ },
526
+ {
527
+ "epoch": 31.38,
528
+ "eval_accuracy": 0.94278135657446,
529
+ "eval_f1": 0.9623515495402261,
530
+ "eval_loss": 0.35516688227653503,
531
+ "eval_precision": 0.9847235247308098,
532
+ "eval_runtime": 121.4163,
533
+ "eval_samples_per_second": 21.735,
534
+ "eval_steps_per_second": 1.812,
535
+ "step": 15500
536
+ },
537
+ {
538
+ "epoch": 32.0,
539
+ "step": 15808,
540
+ "total_flos": 1.2696466131100762e+20,
541
+ "train_loss": 0.6361874522950485,
542
+ "train_runtime": 48273.5986,
543
+ "train_samples_per_second": 15.742,
544
+ "train_steps_per_second": 0.327
545
+ }
546
+ ],
547
+ "max_steps": 15808,
548
+ "num_train_epochs": 32,
549
+ "total_flos": 1.2696466131100762e+20,
550
+ "trial_name": null,
551
+ "trial_params": null
552
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99acc3ede14d128c64289c5346624e6f7e8ff3c65d983d1aaf7198fbaf146ea6
3
+ size 3503