Text Generation
Transformers
PyTorch
Safetensors
English
llama
text-generation-inference
Inference Endpoints
File size: 5,529 Bytes
1a3bfaa
a66fbb4
 
 
 
d9831c9
1a3bfaa
a66fbb4
 
 
16b6583
a66fbb4
 
 
 
 
 
 
f378a4f
 
 
 
 
a66fbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f714c23
00922b6
eacb2b2
a66fbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eacb2b2
 
 
 
 
 
 
 
a66fbb4
 
 
eacb2b2
 
 
a66fbb4
 
 
eacb2b2
 
 
 
 
 
 
a66fbb4
cdd899e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: cc-by-nc-sa-4.0
language:
- en
datasets:
- garage-bAInd/Open-Platypus
---

# Platypus2-70B

Platypus-70B is an instruction fine-tuned model based on the LLaMa2-70B transformer architecture.

![Platty](./Best_Platty_small.jpeg)

### Benchmark Metrics

| Metric                | Value |
|-----------------------|-------|
| MMLU (5-shot)         | 70.48 |
| ARC (25-shot)         | 71.84 |
| HellaSwag (10-shot)   | 87.94 |
| TruthfulQA (0-shot)   | 62.26 |
| Avg.                  | 73.13 |

We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.

### Model Details

* **Trained by**: Cole Hunter & Ariel Lee
* **Model type:**  **Platypus2-70B** is an auto-regressive language model based on the LLaMA2 transformer architecture.
* **Language(s)**: English
* **License for base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))

### Prompt Template
```
### Instruction:

<prompt> (without the <>)

### Response:
```

### Training Dataset

`garage-bAInd/Platypus2-70B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).

Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.

### Training Procedure

`garage-bAInd/Platypus2-70B` was instruction fine-tuned using LoRA on 8 A100 80GB. For training details and inference instructions please see the [Platypus](https://github.com/arielnlee/Platypus) GitHub repo.

### Reproducing Evaluation Results

Install LM Evaluation Harness:
```
# clone repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# check out the correct commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# change to repo directory
cd lm-evaluation-harness
# install
pip install -e .
```
Each task was evaluated on a single A100 80GB GPU.

ARC:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-70B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/Platypus2-70B/arc_challenge_25shot.json --device cuda --num_fewshot 25
```

HellaSwag:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-70B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/Platypus2-70B/hellaswag_10shot.json --device cuda --num_fewshot 10
```

MMLU:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-70B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/Platypus2-70B/mmlu_5shot.json --device cuda --num_fewshot 5
```

TruthfulQA:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-70B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/Platypus2-70B/truthfulqa_0shot.json --device cuda
```
### Limitations and bias

Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/

### Citations
```bibtex
@article{platypus2023,
    title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs}, 
    author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
    booktitle={arXiv preprint arxiv:2308.07317},
    year={2023}
}
```
```bibtex
@misc{touvron2023llama,
    title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, 
    author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov       year={2023},
    eprint={2307.09288},
    archivePrefix={arXiv},
}
```
```bibtex
@inproceedings{
    hu2022lora,
    title={Lo{RA}: Low-Rank Adaptation of Large Language Models},
    author={Edward J Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=nZeVKeeFYf9}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_garage-bAInd__Platypus2-70B)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 64.16   |
| ARC (25-shot)         | 70.65          |
| HellaSwag (10-shot)   | 87.15    |
| MMLU (5-shot)         | 70.08         |
| TruthfulQA (0-shot)   | 52.37   |
| Winogrande (5-shot)   | 84.37   |
| GSM8K (5-shot)        | 33.06        |
| DROP (3-shot)         | 51.41         |