File size: 4,718 Bytes
51f1c53
 
d274c78
 
51f1c53
 
 
 
 
 
 
 
 
 
 
 
 
d274c78
51f1c53
d274c78
 
51f1c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
datasets:
- ai_light_dance
model-index:
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_3

This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2) on the GARY109/AI_LIGHT_DANCE - ONSET-DRUMS_FOLD_3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4093
- Wer: 0.1250

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4557        | 1.0   | 70   | 0.5794          | 0.1197 |
| 0.6796        | 2.0   | 140  | 0.5726          | 0.1388 |
| 0.4511        | 3.0   | 210  | 0.6290          | 0.1242 |
| 0.609         | 4.0   | 280  | 0.7112          | 0.1187 |
| 0.4082        | 5.0   | 350  | 0.8275          | 0.1965 |
| 0.4638        | 6.0   | 420  | 0.4767          | 0.1524 |
| 0.4446        | 7.0   | 490  | 0.5091          | 0.1376 |
| 0.4337        | 8.0   | 560  | 0.6622          | 0.1170 |
| 0.4604        | 9.0   | 630  | 0.7242          | 0.1600 |
| 0.4462        | 10.0  | 700  | 0.7298          | 0.1383 |
| 0.4201        | 11.0  | 770  | 0.8058          | 0.1362 |
| 0.4204        | 12.0  | 840  | 0.6255          | 0.1099 |
| 0.461         | 13.0  | 910  | 0.5204          | 0.1109 |
| 0.3779        | 14.0  | 980  | 0.6911          | 0.1125 |
| 0.3403        | 15.0  | 1050 | 0.5863          | 0.1188 |
| 0.6223        | 16.0  | 1120 | 0.6367          | 0.1147 |
| 0.3827        | 17.0  | 1190 | 0.6266          | 0.1293 |
| 0.3055        | 18.0  | 1260 | 0.4866          | 0.1095 |
| 0.3917        | 19.0  | 1330 | 0.4093          | 0.1250 |
| 0.3912        | 20.0  | 1400 | 0.4514          | 0.1077 |
| 0.3861        | 21.0  | 1470 | 0.5043          | 0.1156 |
| 0.3659        | 22.0  | 1540 | 0.5680          | 0.1091 |
| 0.3536        | 23.0  | 1610 | 0.7940          | 0.1029 |
| 0.3559        | 24.0  | 1680 | 0.5877          | 0.1101 |
| 0.3274        | 25.0  | 1750 | 0.4461          | 0.1059 |
| 0.5232        | 26.0  | 1820 | 1.2051          | 0.1068 |
| 0.3241        | 27.0  | 1890 | 0.8716          | 0.1099 |
| 0.3169        | 28.0  | 1960 | 0.6752          | 0.1082 |
| 0.2938        | 29.0  | 2030 | 0.6023          | 0.1071 |
| 0.3022        | 30.0  | 2100 | 0.6122          | 0.1146 |
| 0.4245        | 31.0  | 2170 | 0.5735          | 0.1102 |
| 0.3095        | 32.0  | 2240 | 0.4476          | 0.1042 |
| 0.4062        | 33.0  | 2310 | 0.6339          | 0.1130 |
| 0.3202        | 34.0  | 2380 | 0.4101          | 0.1077 |
| 0.2952        | 35.0  | 2450 | 0.4825          | 0.1076 |
| 0.2945        | 36.0  | 2520 | 0.4998          | 0.1058 |
| 0.336         | 37.0  | 2590 | 0.5490          | 0.1061 |
| 0.2912        | 38.0  | 2660 | 0.4804          | 0.1038 |
| 0.282         | 39.0  | 2730 | 0.4776          | 0.1022 |
| 0.4359        | 40.0  | 2800 | 0.4376          | 0.1044 |
| 0.2698        | 41.0  | 2870 | 0.5609          | 0.1098 |
| 0.3004        | 42.0  | 2940 | 0.5258          | 0.1083 |
| 0.2873        | 43.0  | 3010 | 0.4810          | 0.1069 |
| 0.3413        | 44.0  | 3080 | 0.4961          | 0.1080 |
| 0.2802        | 45.0  | 3150 | 0.6850          | 0.1076 |
| 0.2584        | 46.0  | 3220 | 0.7210          | 0.1082 |
| 0.3282        | 47.0  | 3290 | 0.6179          | 0.1053 |
| 0.2666        | 48.0  | 3360 | 0.7673          | 0.1075 |
| 0.2989        | 49.0  | 3430 | 0.7710          | 0.1079 |
| 0.2676        | 50.0  | 3500 | 0.7655          | 0.1076 |


### Framework versions

- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1