--- datasets: - lewtun/music_genres_small base_model: - facebook/wav2vec2-large metrics: - accuracy - f1 tags: - audio - music - classification - Wav2Vec2 --- # My Music Genre Classification Model 🎶 This model classifies music genres based on audio signals. It was fine-tuned on the `music_genres_small` dataset using the Wav2Vec2 architecture. ## Metrics - **Validation Accuracy**: 75% - **F1 Score**: 74% - **Validation Loss**: 0.77 ## Usage ```python from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor import torch # Load the model and feature extractor model = Wav2Vec2ForSequenceClassification.from_pretrained("username/repo-name") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("username/repo-name") # Prepare input audio = ... # Your audio array inputs = feature_extractor(audio, sampling_rate=16000, return_tensors="pt") # Make predictions logits = model(**inputs).logits predicted_class = torch.argmax(logits, dim=-1).item() print(predicted_class)