Update README.md
Browse files
README.md
CHANGED
@@ -20,6 +20,37 @@ This model has been trained on the following datasets:
|
|
20 |
2. Multi-Aspect Multi-Sentiment [MAMS](https://aclanthology.org/D19-1654/)
|
21 |
|
22 |
# Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
* Making token level inferences with Auto classes
|
25 |
|
@@ -82,35 +113,7 @@ Expected output
|
|
82 |
('.', 'O')]
|
83 |
```
|
84 |
|
85 |
-
* Making end-to-end inference with a pipeline
|
86 |
-
|
87 |
-
```python
|
88 |
-
|
89 |
-
from transformers import pipeline
|
90 |
|
91 |
-
ate_sent_pipeline = pipeline(task='ner',
|
92 |
-
aggregation_strategy='simple',
|
93 |
-
model="gauneg/deberta-v3-base-absa-ate-sentiment")
|
94 |
-
|
95 |
-
text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded."
|
96 |
-
ate_sent_pipeline(text_input)
|
97 |
-
|
98 |
-
```
|
99 |
-
Expected output
|
100 |
-
|
101 |
-
```bash
|
102 |
-
[{'entity_group': 'pos', #sentiment polarity
|
103 |
-
'score': 0.87505656,
|
104 |
-
'word': 'food', # aspect term
|
105 |
-
'start': 25,
|
106 |
-
'end': 30},
|
107 |
-
{'entity_group': 'neg',# sentiment polarity
|
108 |
-
'score': 0.4558051,
|
109 |
-
'word': 'service', #aspect term
|
110 |
-
'start': 55,
|
111 |
-
'end': 63}]
|
112 |
-
|
113 |
-
```
|
114 |
|
115 |
|
116 |
# Evaluation on Benchmark Test Datasets
|
|
|
20 |
2. Multi-Aspect Multi-Sentiment [MAMS](https://aclanthology.org/D19-1654/)
|
21 |
|
22 |
# Use
|
23 |
+
* Making end-to-end inference with a pipeline
|
24 |
+
|
25 |
+
```python
|
26 |
+
|
27 |
+
from transformers import pipeline
|
28 |
+
|
29 |
+
ate_sent_pipeline = pipeline(task='ner',
|
30 |
+
aggregation_strategy='simple',
|
31 |
+
model="gauneg/deberta-v3-base-absa-ate-sentiment")
|
32 |
+
|
33 |
+
text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded."
|
34 |
+
ate_sent_pipeline(text_input)
|
35 |
+
|
36 |
+
```
|
37 |
+
Expected output
|
38 |
+
|
39 |
+
```bash
|
40 |
+
[{'entity_group': 'pos', #sentiment polarity
|
41 |
+
'score': 0.87505656,
|
42 |
+
'word': 'food', # aspect term
|
43 |
+
'start': 25,
|
44 |
+
'end': 30},
|
45 |
+
{'entity_group': 'neg',# sentiment polarity
|
46 |
+
'score': 0.4558051,
|
47 |
+
'word': 'service', #aspect term
|
48 |
+
'start': 55,
|
49 |
+
'end': 63}]
|
50 |
+
|
51 |
+
```
|
52 |
+
|
53 |
+
# OR
|
54 |
|
55 |
* Making token level inferences with Auto classes
|
56 |
|
|
|
113 |
('.', 'O')]
|
114 |
```
|
115 |
|
|
|
|
|
|
|
|
|
|
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
# Evaluation on Benchmark Test Datasets
|