gauneg commited on
Commit
6f5cf97
1 Parent(s): 4995a9a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -26
README.md CHANGED
@@ -20,6 +20,33 @@ This model has been trained on the following datasets:
20
 
21
  # Use
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  * Making token level inferences with Auto classes
24
  ```python
25
  from transformers import AutoTokenizer, AutoModelForTokenClassification
@@ -82,33 +109,7 @@ tok_levl_pred = list(zip(tokenizer.convert_ids_to_tokens(decoded_toks), decoded_
82
  ('.', 'O')]
83
  ```
84
 
85
- # OR
86
-
87
- * Using the pipeline directly for end-to-end inference:
88
- ```python
89
- from transformers import pipeline
90
-
91
- ate_sent_pipeline = pipeline(task='ner',
92
- aggregation_strategy='simple',
93
- model="gauneg/roberta-base-absa-ate-sentiment")
94
-
95
- text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded."
96
- ate_sent_pipeline(text_input)
97
- ```
98
- * pipeline output:
99
- ```bash
100
- [{'entity_group': 'pos', #sentiment polarity
101
- 'score': 0.8447307,
102
- 'word': ' food', # aspect term
103
- 'start': 26,
104
- 'end': 30},
105
- {'entity_group': 'neg', #sentiment polarity
106
- 'score': 0.81927896,
107
- 'word': ' service', #aspect term
108
- 'start': 56,
109
- 'end': 63}]
110
 
111
- ```
112
 
113
  # Evaluation on Benchmark Test Datasets
114
 
 
20
 
21
  # Use
22
 
23
+ * Using the pipeline directly for end-to-end inference:
24
+ ```python
25
+ from transformers import pipeline
26
+
27
+ ate_sent_pipeline = pipeline(task='ner',
28
+ aggregation_strategy='simple',
29
+ model="gauneg/roberta-base-absa-ate-sentiment")
30
+
31
+ text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded."
32
+ ate_sent_pipeline(text_input)
33
+ ```
34
+ * pipeline output:
35
+ ```bash
36
+ [{'entity_group': 'pos', #sentiment polarity
37
+ 'score': 0.8447307,
38
+ 'word': ' food', # aspect term
39
+ 'start': 26,
40
+ 'end': 30},
41
+ {'entity_group': 'neg', #sentiment polarity
42
+ 'score': 0.81927896,
43
+ 'word': ' service', #aspect term
44
+ 'start': 56,
45
+ 'end': 63}]
46
+
47
+ ```
48
+
49
+ # OR
50
  * Making token level inferences with Auto classes
51
  ```python
52
  from transformers import AutoTokenizer, AutoModelForTokenClassification
 
109
  ('.', 'O')]
110
  ```
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
 
113
 
114
  # Evaluation on Benchmark Test Datasets
115