Create README.md
Browse files# T5 large LM Adapt for Text to SQL
This model is fine-tuned from the [t5-large-LM-adapt](https://huggingface.co/google/t5-large-lm-adapt) checkpoint.
## Spider and Spider-Syn dataset
The model was fine-tuned on the training splits of [Spider](https://yale-lily.github.io/spider) and [Spider-Syn](https://github.com/ygan/Spider-Syn/tree/main/Spider-Syn) datasets. Instead of using only the questions, we added the database schema to the question, as we wanted the model to generate a question over a given database
_input_:
```
Question: What is the average, minimum, and maximum age for all French musicians?
Schema: "stadium" "Stadium_ID" int , "Location" text , "Name" text , "Capacity" int , "Highest" int , "Lowest" int , "Average" int , foreign_key: primary key: "Stadium_ID" [SEP] "singer" "Singer_ID" int , "Name" text , "Country" text , "Song_Name" text , "Song_release_year" text , "Age" int , "Is_male" bool , foreign_key: primary key: "Singer_ID" [SEP] "concert" "concert_ID" int , "concert_Name" text , "Theme" text , "Year" text , foreign_key: "Stadium_ID" text from "stadium" "Stadium_ID" , primary key: "concert_ID" [SEP] "singer_in_concert" foreign_key: "concert_ID" int from "concert" "concert_ID" , "Singer_ID" text from "singer" "Singer_ID" , primary key: "concert_ID" "Singer_ID"
```
=> _target_:
```
SELECT avg(age), min(age), max(age) FROM singer WHERE country = 'France'
```
When evaluating we query the sqlite database
=> _query result_:
```
[[34.5, 25, 43]]
```
## Format of the database schema
The standardized database schema the model was trained on:
```
table_name column1_name column1_type column2_name column2_type ... foreign_key: FK_name FK_type from table_name column_name primary key: column_name [SEP]
table_name2 ...
```
## Usage
Here is how to use this model to answer the question on a given context using 🤗 Transformers in PyTorch:
```
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_path = 'gaussalgo/T5-LM-Large-text2sql-spider'
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
question = "What is the average, minimum, and maximum age for all French musicians?"
schema = ""stadium" "Stadium_ID" int , "Location" text , "Name" text , "Capacity" int , "Highest" int , "Lowest" int , "Average" int , foreign_key: primary key: "Stadium_ID" [SEP] "singer" "Singer_ID" int , "Name" text , "Country" text , "Song_Name" text , "Song_release_year" text , "Age" int , "Is_male" bool , foreign_key: primary key: "Singer_ID" [SEP] "concert" "concert_ID" int , "concert_Name" text , "Theme" text , "Year" text , foreign_key: "Stadium_ID" text from "stadium" "Stadium_ID" , primary key: "concert_ID" [SEP] "singer_in_concert" foreign_key: "concert_ID" int from "concert" "concert_ID" , "Singer_ID" text from "singer" "Singer_ID" , primary key: "concert_ID" "Singer_ID""
input_text = " ".join(["Question: ",question, "Schema:", schema])
model_inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**model_inputs, max_length=512)
output_text = tokenizer.decode(outputs, skip_special_tokens=True)
print("SQL Query:")
print(output_text)
```
## Training
The model has been trained using [Adaptor library](https://github.com/gaussalgo/adaptor) 0.2.1, on training splits of Spider and Spider-syn datasets with the following parameters:
```
training_arguments = AdaptationArguments(output_dir="train_dir",
learning_rate=5e-5,
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
stopping_patience=8,
save_total_limit=8,
do_train=True,
do_eval=True,
bf16=True,
warmup_steps=1000,
gradient_accumulation_steps=8,
logging_steps=10,
eval_steps=200,
save_steps=1000,
num_train_epochs=10,
evaluation_strategy="steps")
```