gayanin commited on
Commit
e8ca43d
·
1 Parent(s): 29f1f86

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: bart-mlm-pubmed-medterm
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # bart-mlm-pubmed-medterm
14
+
15
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0000
18
+ - Rouge2 Precision: 0.985
19
+ - Rouge2 Recall: 0.7208
20
+ - Rouge2 Fmeasure: 0.8088
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 0.0018 | 1.0 | 13833 | 0.0003 | 0.985 | 0.7208 | 0.8088 |
53
+ | 0.0014 | 2.0 | 27666 | 0.0006 | 0.9848 | 0.7207 | 0.8086 |
54
+ | 0.0009 | 3.0 | 41499 | 0.0002 | 0.9848 | 0.7207 | 0.8086 |
55
+ | 0.0007 | 4.0 | 55332 | 0.0002 | 0.985 | 0.7208 | 0.8088 |
56
+ | 0.0006 | 5.0 | 69165 | 0.0001 | 0.9848 | 0.7207 | 0.8087 |
57
+ | 0.0001 | 6.0 | 82998 | 0.0002 | 0.9846 | 0.7206 | 0.8086 |
58
+ | 0.0009 | 7.0 | 96831 | 0.0001 | 0.9848 | 0.7208 | 0.8087 |
59
+ | 0.0 | 8.0 | 110664 | 0.0000 | 0.9848 | 0.7207 | 0.8087 |
60
+ | 0.0001 | 9.0 | 124497 | 0.0000 | 0.985 | 0.7208 | 0.8088 |
61
+ | 0.0 | 10.0 | 138330 | 0.0000 | 0.985 | 0.7208 | 0.8088 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.12.5
67
+ - Pytorch 1.10.0+cu111
68
+ - Datasets 1.16.1
69
+ - Tokenizers 0.10.3