File size: 26,587 Bytes
7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 7bb4354 b9ccfe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
---
license: cc-by-nc-sa-4.0
---
# ChemFIE-DTP (DrugTargetPrediction - 221 Classes)
This model is a multiclass sequence classification for 221 human protein drug targets, based on [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm) fine-tuned on a dataset derived from ChemBL34 (Zdrazil et al. 2023). It predicts potential drug targets using chemical structures represented as SELFIES (Self-Referencing Embedded Strings). The model was trained on a selected and balanced dataset of around 154k examples covering 221 distinct human protein targets. Data selection criteria included specific activity types (IC50, Ki, EC50) with values ≤ 10 µM, assay confidence scores ≥ 7, and exact activity relations. Among all drug target classes found in ChemBL34, classes with at least 1000 examples are selected then capped at 1000 for those with more samples. Building upon the pre-trained base model's pre-existing knowledge of SELFIES, this model is originally intended to validate the capabilities of the light-weight base model to be fine-tuned for various tasks, and for this model case, it might be useful for tasks related to early-stage drug discovery and target prediction (e.g. compounds annotations) - though its performance and applicability should be carefully evaluated for specific use cases (see [Evaluation](#evaluation))
- List of classes available in the "label_dict.json"
- Its performance on each classes available in "test_result.txt"
### Disclaimer: For Academic Purposes Only
The information and model provided is for academic purposes only. It is intended for educational and research use, and should not be used for any commercial or legal purposes. The author do not guarantee the accuracy, completeness, or reliability of the information.
# Table of Contents
1. [Model Details](#model-details)
2. [Usage](#usage)
1. [SMILES to SELFIES conversion](#uses)
2. [Get Top-K Prediction](#get-top-k-prediction)
3. [Direct Use using Classifier Pipeline](#direct-use-using-classifier-pipeline)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
1. [General](#general)
2. [Classes with Best Performance (F1>0.9)](#classes-with-best-performance-f109)
3. [Classes with Good Performance (0.7<F1<0.9)](#classes-with-good-performance-07f109)
4. [Classes with Moderate Performance (0.5<F1<0.7)](#classes-with-moderate-performance-05f107)
5. [Classes with Limited Performance (0.3<F1<0.5)](#classes-with-limited-performance-03f105)
6. [Classes with Poor Performance (0.1<F1<0.3)](#classes-with-poor-performance-01f103)
5. [Model Examination](#model-examination)
6. [Technical Specifications](#technical-specifications)
7. [Citation](#citation)
8. [Contact & Support My Work](#contact--support-my-work)
## Model Details
### Model Description
- **Model Type:** Transformer (BertForSequenceClassification)
- **Base model:** [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm)
- **Maximum Sequence Length:** 512 tokens
- **Number of Labels:** 221 classes
- **Training Dataset:** SELFIES with labels derived from ChemBL34
- **Language:** SELFIES
- **License:** CC-BY-NC-SA 4.0
## Uses
If you have Canonical SMILES instead of SELFIES, you can convert it first into a format readable by the model's tokenizer (using whitespace)
```python
import selfies as sf
def smiles_to_selfies_sentence(smiles):
try:
selfies = sf.encoder(smiles) # Encode SMILES into SELFIES
selfies_tokens = list(sf.split_selfies(selfies))
# Join dots with the nearest next tokens
joined_tokens = []
i = 0
while i < len(selfies_tokens):
if selfies_tokens[i] == '.' and i + 1 < len(selfies_tokens):
joined_tokens.append(f".{selfies_tokens[i+1]}")
i += 2
else:
joined_tokens.append(selfies_tokens[i])
i += 1
selfies_sentence = ' '.join(joined_tokens)
return selfies_sentence
except sf.EncoderError as e:
print(f"Encoder Error: {e}")
return None
# Example usage:
in_smi = "C1CCC2=CN3C=CC4=C5C=CC=CC5=NC4=C3C=C2C1" # Sempervirine (CID168919)
selfies_sentence = smiles_to_selfies_sentence(in_smi)
print(selfies_sentence)
"""
[C] [C] [C] [C] [=C] [N] [C] [=C] [C] [=C] [C] [=C] [C] [=C] [C] [Ring1] [=Branch1] [=N] [C] [Ring1] [=Branch2] [=C] [Ring1] [=N] [C] [=C] [Ring1] [P] [C] [Ring2] [Ring1] [Branch1]
"""
```
### Get Top-K Prediction
Due to my fault not relating label number with target name directly during training, to get the model output human readable target and its corresponding ChemBL34 TID, we need to utilize the "label_dict.json".
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import json
model_id = "./epfin"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
# Load the updated_label_dict.json file
with open("updated_label_dict.json", "r") as f:
label_dict = json.load(f)
# Create a mapping from label number to CHEMBL ID and target name
label_to_chembl = {str(info['label']): {'chembl_id': chembl_id, 'target_name': info['target_name']}
for chembl_id, info in label_dict.items()}
def get_top_k_predictions(selfies_string, k=10):
# Tokenize the input
inputs = tokenizer(selfies_string, return_tensors="pt", padding=True, truncation=True)
# Get the model output
with torch.no_grad():
outputs = model(**inputs)
# Get the probabilities
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get the top-k indices and probabilities
top_k_probs, top_k_indices = torch.topk(probs, k)
# Convert to numpy for easier handling
top_k_probs = top_k_probs.squeeze().numpy()
top_k_indices = top_k_indices.squeeze().numpy()
# Get the class labels and map them to CHEMBL IDs and target names
results = []
for idx, prob in zip(top_k_indices, top_k_probs):
label = str(idx)
if label in label_to_chembl:
chembl_id = label_to_chembl[label]['chembl_id']
target_name = label_to_chembl[label]['target_name']
results.append((chembl_id, target_name, prob))
else:
results.append((f"Unknown_class_{label}", "Unknown target", prob))
return results
text = "[C] [C] [C] [C] [=C] [N] [C] [=C] [C] [=C] [C] [=C] [C] [=C] [C] [Ring1] [=Branch1] [=N] [C] [Ring1] [=Branch2] [=C] [Ring1] [=N] [C] [=C] [Ring1] [P] [C] [Ring2] [Ring1] [Branch1]" #Sempervirine (CID168919)
top_5_predictions = get_top_k_predictions(text, k=5)
print("Top 5 predictions:")
for chembl_id, target_name, prob in top_5_predictions:
print(f"{chembl_id} ({target_name}): {prob:.4f}")
"""
Top 5 predictions:
CHEMBL1951 (Monoamine oxidase A): 0.5925
CHEMBL1914 (Butyrylcholinesterase): 0.0520
CHEMBL220 (Acetylcholinesterase): 0.0321
CHEMBL2039 (Monoamine oxidase B): 0.0259
CHEMBL5113 (Orexin receptor 1): 0.0252
"""
```
### Direct Use using Classifier Pipeline
You can also use pipeline:
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="./epfin")
classifier("[C] [C] [C] [C] [=C] [N] [C] [=C] [C] [=C] [C] [=C] [C] [=C] [C] [Ring1] [=Branch1] [=N] [C] [Ring1] [=Branch2] [=C] [Ring1] [=N] [C] [=C] [Ring1] [P] [C] [Ring2] [Ring1] [Branch1]") #Sempervirine (CID168919)
# [{'label': 'LABEL_25', 'score': 0.5924742221832275}]
```
## Training Details
### Training Data
##### Data Sources
Bioactive compounds from [ChemBL34](https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/) (Zdrazil et al., 2023) using its [PostgreSQL dump](https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/)
##### Data Preparation
Dataset Details:
- Total training examples: 154,700
- Number of classes: 221 distinct human protein drug targets
- Organism: Homo sapiens
- Number of train examples for each class: 700
- Number of validation examples for each class: 100
- Number of held out test examples for each class: 200
Data Selection Criteria:
- Activity types: IC50, Ki, EC50
- Activity threshold: ≤ 10 µM (10,000 nM)
- Assay confidence score: ≥ 7
- Standard relation: Exact matches only ('=')
- SMILES: Canonical representations only
Data Preprocessing
- Convertion from Canonical SMILES into SELFIES readable by base model's tokenizer, any failed entries are removed
- Balancing the data distribution by setting up min max (1000)
### Training Procedure
#### Training Hyperparameters
- Batch size = 128
- Num of Epoch= 36
I am using Ranger21 optimizer with these settings:
```
Core optimizer = madgrad
Learning rate of 1.5e-05
num_epochs of training = ** 1 epochs **
using AdaBelief for variance computation
Warm-up: linear warmup, over 964 iterations (0.22)
Lookahead active, merging every 5 steps, with blend factor of 0.5
Norm Loss active, factor = 0.0001
Stable weight decay of 0.01
Gradient Centralization = On
Adaptive Gradient Clipping = True
clipping value of 0.01
steps for clipping = 0.001
```
I turned off the warm down, since in prior experiments it led to instability of losses in my case.
For more information about Ranger21, you could check out [this repository](https://github.com/lessw2020/Ranger21).
Final training epoch:
- Training Loss: 0.772700
- Validation Loss: 1.299520
- Accuracy: 0.619050
- Macro Precision: 0.612262
- Macro Recall: 0.619050
- Macro F1: 0.611072
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
The model was evaluated on a test dataset containing 44,200 samples, with 200 examples per class.
#### Factors
The evaluation disaggregated results by individual classes and provided macro and weighted averages across all classes.
#### Metrics
The following metrics were used to evaluate the model's performance:
1. Accuracy: Measures the overall correctness of predictions.
2. F1-score: Harmonic mean of precision and recall, providing a balanced measure of the model's performance.
3. Precision: Ratio of true positive predictions to all positive predictions.
4. Recall: Ratio of true positive predictions to all actual positive instances.
Both macro (unweighted mean of all classes) and weighted (weighted by class support) averages were calculated for F1-score, precision, and recall.
### Results
#### General
- Accuracy: 0.6199
- Macro F1: 0.6127
- Weighted F1: 0.6127
Macro average:
- Precision: 0.6142
- Recall: 0.6199
- F1-score: 0.6127
Weighted average:
- Precision: 0.6142
- Recall: 0.6199
- F1-score: 0.6127
#### In Detail
- F1-score 0.9-0.99: 39 classes
- F1-score 0.7-0.8: 23 classes
- F1-score 0.5-0.6: 24 classes
- F1-score 0.4-0.5: 36 classes
- F1-score below 0.4: 49 classes
#### Classes with Best Performance (F1>0.9)
```
CHEMBL252: Endothelin receptor ET-A (F1: 0.9875)
CHEMBL4829: Acetyl-CoA carboxylase 2 (F1: 0.9849)
CHEMBL3713062: Tissue factor pathway inhibitor (F1: 0.9825)
CHEMBL2176771: Complement factor D (F1: 0.9801)
CHEMBL3988583: Sepiapterin reductase (F1: 0.9798)
CHEMBL3572: Cholesteryl ester transfer protein (F1: 0.9776)
CHEMBL1800: Corticotropin releasing factor receptor 1 (F1: 0.9750)
CHEMBL4198: Inhibitor of apoptosis protein 3 (F1: 0.9704)
CHEMBL5137: Metabotropic glutamate receptor 2 (F1: 0.9679)
CHEMBL5652: Glucose-dependent insulinotropic receptor (F1: 0.9677)
CHEMBL1985: Glucagon receptor (F1: 0.9674)
CHEMBL2001: Purinergic receptor P2Y12 (F1: 0.9674)
CHEMBL2007625: Isocitrate dehydrogenase [NADP] cytoplasmic (F1: 0.9628)
CHEMBL3820: Hexokinase type IV (F1: 0.9606)
CHEMBL4550: 5-lipoxygenase activating protein (F1: 0.9606)
CHEMBL6009: Diacylglycerol O-acyltransferase 1 (F1: 0.9604)
CHEMBL298: Cholecystokinin B receptor (F1: 0.9582)
CHEMBL1855: Gonadotropin-releasing hormone receptor (F1: 0.9538)
CHEMBL1945: Melatonin receptor 1A (F1: 0.9512)
CHEMBL4561: Neuropeptide Y receptor type 5 (F1: 0.9484)
CHEMBL4805: P2X purinoceptor 7 (F1: 0.9439)
CHEMBL5071: G protein-coupled receptor 44 (F1: 0.9438)
CHEMBL4616: Ghrelin receptor (F1: 0.9409)
CHEMBL4422: Free fatty acid receptor 1 (F1: 0.9406)
CHEMBL4441: C-X-C chemokine receptor type 3 (F1: 0.9403)
CHEMBL248: Leukocyte elastase (F1: 0.9373)
CHEMBL2998: P2X purinoceptor 3 (F1: 0.9363)
CHEMBL1744525: Nicotinamide phosphoribosyltransferase (F1: 0.9307)
CHEMBL1966: Dihydroorotate dehydrogenase (F1: 0.9272)
CHEMBL5023: p53-binding protein Mdm-2 (F1: 0.9250)
CHEMBL259: Melanocortin receptor 4 (F1: 0.9246)
CHEMBL1889: Vasopressin V1a receptor (F1: 0.9173)
CHEMBL3105: Poly [ADP-ribose] polymerase-1 (F1: 0.9158)
CHEMBL286: Renin (F1: 0.9148)
CHEMBL2000: Plasma kallikrein (F1: 0.9109)
CHEMBL249: Neurokinin 1 receptor (F1: 0.9104)
CHEMBL2243: Anandamide amidohydrolase (F1: 0.9059)
CHEMBL284: Dipeptidyl peptidase IV (F1: 0.9037)
CHEMBL2094135: Gamma-secretase (F1: 0.9020)
```
#### Classes with Good Performance (0.7<F1<0.9)
```
CHEMBL4015: C-C chemokine receptor type 2 (F1: 0.8993)
CHEMBL4439: TGF-beta receptor type I (F1: 0.8988)
CHEMBL1741186: Nuclear receptor ROR-gamma (F1: 0.8985)
CHEMBL4235: 11-beta-hydroxysteroid dehydrogenase 1 (F1: 0.8967)
CHEMBL4296: Sodium channel protein type IX alpha subunit (F1: 0.8960)
CHEMBL4409: Phosphodiesterase 10A (F1: 0.8960)
CHEMBL4794: Vanilloid receptor (F1: 0.8873)
CHEMBL3983: Dual specificity protein kinase TTK (F1: 0.8834)
CHEMBL1163125: Bromodomain-containing protein 4 (F1: 0.8788)
CHEMBL274: C-C chemokine receptor type 5 (F1: 0.8784)
CHEMBL3227: Metabotropic glutamate receptor 5 (F1: 0.8715)
CHEMBL2334: Caspase-3 (F1: 0.8651)
CHEMBL2047: Bile acid receptor FXR (F1: 0.8628)
CHEMBL4040: MAP kinase ERK2 (F1: 0.8607)
CHEMBL6136: Lysine-specific histone demethylase 1 (F1: 0.8544)
CHEMBL3880: Heat shock protein HSP 90-alpha (F1: 0.8537)
CHEMBL344: Melanin-concentrating hormone receptor 1 (F1: 0.8449)
CHEMBL1827: Phosphodiesterase 5A (F1: 0.8325)
CHEMBL275: Phosphodiesterase 4B (F1: 0.8286)
CHEMBL3759: Histamine H4 receptor (F1: 0.8286)
CHEMBL3473: C-C chemokine receptor type 3 (F1: 0.8253)
CHEMBL2599: Tyrosine-protein kinase SYK (F1: 0.8247)
CHEMBL1075104: Leucine-rich repeat serine/threonine-protein kinase 2 (F1: 0.8212)
CHEMBL3778: Interleukin-1 receptor-associated kinase 4 (F1: 0.8177)
CHEMBL4685: Indoleamine 2,3-dioxygenase (F1: 0.8171)
CHEMBL2409: Epoxide hydratase (F1: 0.8075)
CHEMBL5251: Tyrosine-protein kinase BTK (F1: 0.8051)
CHEMBL5658: Prostaglandin E synthase (F1: 0.7913)
CHEMBL335: Protein-tyrosine phosphatase 1B (F1: 0.7891)
CHEMBL331: Cyclin-dependent kinase 4 (F1: 0.7810)
CHEMBL3717: Hepatocyte growth factor receptor (F1: 0.7656)
CHEMBL2014: Nociceptin receptor (F1: 0.7632)
CHEMBL1978: Cytochrome P450 19A1 (F1: 0.7553)
CHEMBL2111389: CDK9/cyclin T1 (F1: 0.7526)
CHEMBL4578: Maternal embryonic leucine zipper kinase (F1: 0.7494)
CHEMBL1906: Serine/threonine-protein kinase RAF (F1: 0.7488)
CHEMBL4630: Serine/threonine-protein kinase Chk1 (F1: 0.7441)
CHEMBL3024: Serine/threonine-protein kinase PLK1 (F1: 0.7422)
CHEMBL3884: Sodium/glucose cotransporter 2 (F1: 0.7409)
CHEMBL2581: Cathepsin D (F1: 0.7404)
CHEMBL209: Trypsin I (F1: 0.7333)
CHEMBL2815: Nerve growth factor receptor Trk-A (F1: 0.7296)
CHEMBL2695: Focal adhesion kinase 1 (F1: 0.7294)
CHEMBL3892: Sphingosine 1-phosphate receptor Edg-3 (F1: 0.7211)
CHEMBL4282: Serine/threonine-protein kinase AKT (F1: 0.7163)
CHEMBL5393: ATP-binding cassette sub-family G member 2 (F1: 0.7153)
CHEMBL1957: Insulin-like growth factor I receptor (F1: 0.7115)
CHEMBL2487: Amyloid-beta A4 protein (F1: 0.7042)
CHEMBL1871: Androgen Receptor (F1: 0.7040)
CHEMBL260: MAP kinase p38 alpha (F1: 0.7010)
```
#### Classes with Moderate Performance (0.5<F1<0.7)
```
CHEMBL5145: Serine/threonine-protein kinase B-raf (F1: 0.6977)
CHEMBL4302: P-glycoprotein 1 (F1: 0.6957)
CHEMBL230: Cyclooxygenase-2 (F1: 0.6847)
CHEMBL2525: Beta secretase 2 (F1: 0.6829)
CHEMBL3116: Cyclin-dependent kinase 9 (F1: 0.6667)
CHEMBL4625: Apoptosis regulator Bcl-X (F1: 0.6652)
CHEMBL2034: Glucocorticoid receptor (F1: 0.6650)
CHEMBL244: Coagulation factor X (F1: 0.6649)
CHEMBL264: Histamine H3 receptor (F1: 0.6617)
CHEMBL4247: ALK tyrosine kinase receptor (F1: 0.6545)
CHEMBL2276: c-Jun N-terminal kinase 1 (F1: 0.6506)
CHEMBL4979: Sodium/glucose cotransporter 1 (F1: 0.6467)
CHEMBL1824: Receptor protein-tyrosine kinase erbB-2 (F1: 0.6447)
CHEMBL215: Arachidonate 5-lipoxygenase (F1: 0.6416)
CHEMBL4333: Sphingosine 1-phosphate receptor Edg-1 (F1: 0.6409)
CHEMBL3706: ADAM17 (F1: 0.6316)
CHEMBL1844: Macrophage colony stimulating factor receptor (F1: 0.6263)
CHEMBL208: Progesterone receptor (F1: 0.6253)
CHEMBL2842: Serine/threonine-protein kinase mTOR (F1: 0.6196)
CHEMBL1914: Butyrylcholinesterase (F1: 0.6186)
CHEMBL255: Adenosine A2b receptor (F1: 0.6147)
CHEMBL287: Sigma opioid receptor (F1: 0.6104)
CHEMBL3371: Serotonin 6 (5-HT6) receptor (F1: 0.6087)
CHEMBL204: Thrombin (F1: 0.5959)
CHEMBL3979: Peroxisome proliferator-activated receptor delta (F1: 0.5919)
CHEMBL4860: Apoptosis regulator Bcl-2 (F1: 0.5876)
CHEMBL218: Cannabinoid CB1 receptor (F1: 0.5831)
CHEMBL2056: Dopamine D1 receptor (F1: 0.5783)
CHEMBL1862: Tyrosine-protein kinase ABL (F1: 0.5741)
CHEMBL1908: Cytochrome P450 11B1 (F1: 0.5720)
CHEMBL246: Beta-3 adrenergic receptor (F1: 0.5650)
CHEMBL4204: MAP kinase signal-integrating kinase 2 (F1: 0.5504)
CHEMBL4822: Beta-secretase 1 (F1: 0.5460)
CHEMBL242: Estrogen receptor beta (F1: 0.5356)
CHEMBL5407: Serine/threonine-protein kinase PIM3 (F1: 0.5311)
CHEMBL253: Cannabinoid CB2 receptor (F1: 0.5288)
CHEMBL262: Glycogen synthase kinase-3 beta (F1: 0.5248)
CHEMBL219: Dopamine D4 receptor (F1: 0.5246)
CHEMBL2973: Rho-associated protein kinase 2 (F1: 0.5241)
CHEMBL4501: Ribosomal protein S6 kinase 1 (F1: 0.5209)
CHEMBL3973: Fibroblast growth factor receptor 4 (F1: 0.5180)
CHEMBL2954: Cathepsin S (F1: 0.5172)
CHEMBL3553: Tyrosine-protein kinase TYK2 (F1: 0.5138)
CHEMBL4792: Orexin receptor 2 (F1: 0.5133)
CHEMBL2835: Tyrosine-protein kinase JAK1 (F1: 0.5119)
CHEMBL235: Peroxisome proliferator-activated receptor gamma (F1: 0.5030)
CHEMBL1821: Muscarinic acetylcholine receptor M4 (F1: 0.5000)
```
#### Classes with Limited Performance (0.3<F1<0.5)
```
CHEMBL2039: Monoamine oxidase B (F1: 0.4977)
CHEMBL4361: Induced myeloid leukemia cell differentiation protein Mcl-1 (F1: 0.4962)
CHEMBL1951: Monoamine oxidase A (F1: 0.4951)
CHEMBL206: Estrogen receptor alpha (F1: 0.4948)
CHEMBL236: Delta opioid receptor (F1: 0.4933)
CHEMBL239: Peroxisome proliferator-activated receptor alpha (F1: 0.4916)
CHEMBL267: Tyrosine-protein kinase SRC (F1: 0.4896)
CHEMBL4072: Cathepsin B (F1: 0.4878)
CHEMBL268: Cathepsin K (F1: 0.4808)
CHEMBL2326: Carbonic anhydrase VII (F1: 0.4742)
CHEMBL1913: Platelet-derived growth factor receptor beta (F1: 0.4717)
CHEMBL1868: Vascular endothelial growth factor receptor 1 (F1: 0.4676)
CHEMBL4142: Fibroblast growth factor receptor 2 (F1: 0.4579)
CHEMBL1898: Serotonin 1b (5-HT1b) receptor (F1: 0.4560)
CHEMBL3130: PI3-kinase p110-delta subunit (F1: 0.4505)
CHEMBL4225: Dual specificity protein kinase CLK2 (F1: 0.4476)
CHEMBL4588: Matrix metalloproteinase 8 (F1: 0.4472)
CHEMBL4523: Serine/threonine-protein kinase PIM2 (F1: 0.4419)
CHEMBL3155: Serotonin 7 (5-HT7) receptor (F1: 0.4416)
CHEMBL238: Dopamine transporter (F1: 0.4403)
CHEMBL220: Acetylcholinesterase (F1: 0.4375)
CHEMBL258: Tyrosine-protein kinase LCK (F1: 0.4296)
CHEMBL1974: Tyrosine-protein kinase receptor FLT3 (F1: 0.4293)
CHEMBL308: Cyclin-dependent kinase 1 (F1: 0.4276)
CHEMBL237: Kappa opioid receptor (F1: 0.4270)
CHEMBL5113: Orexin receptor 1 (F1: 0.4252)
CHEMBL231: Histamine H1 receptor (F1: 0.4251)
CHEMBL222: Norepinephrine transporter (F1: 0.4245)
CHEMBL3729: Carbonic anhydrase IV (F1: 0.4194)
CHEMBL2722: Cytochrome P450 11B2 (F1: 0.4146)
CHEMBL4722: Serine/threonine-protein kinase Aurora-A (F1: 0.4126)
CHEMBL216: Muscarinic acetylcholine receptor M1 (F1: 0.4092)
CHEMBL3192: Histone deacetylase 8 (F1: 0.4078)
CHEMBL1829: Histone deacetylase 3 (F1: 0.4073)
CHEMBL1833: Serotonin 2b (5-HT2b) receptor (F1: 0.4026)
CHEMBL203: Epidermal growth factor receptor erbB1 (F1: 0.4023)
CHEMBL280: Matrix metalloproteinase 13 (F1: 0.3957)
CHEMBL3231: Rho-associated protein kinase 1 (F1: 0.3923)
CHEMBL210: Beta-2 adrenergic receptor (F1: 0.3911)
CHEMBL256: Adenosine A3 receptor (F1: 0.3826)
CHEMBL1936: Stem cell growth factor receptor (F1: 0.3786)
CHEMBL245: Muscarinic acetylcholine receptor M3 (F1: 0.3774)
CHEMBL3145: PI3-kinase p110-beta subunit (F1: 0.3697)
CHEMBL213: Beta-1 adrenergic receptor (F1: 0.3696)
CHEMBL3837: Cathepsin L (F1: 0.3684)
CHEMBL2742: Fibroblast growth factor receptor 3 (F1: 0.3669)
CHEMBL2148: Tyrosine-protein kinase JAK3 (F1: 0.3621)
CHEMBL223: Alpha-1d adrenergic receptor (F1: 0.3579)
CHEMBL2147: Serine/threonine-protein kinase PIM1 (F1: 0.3578)
CHEMBL3650: Fibroblast growth factor receptor 1 (F1: 0.3386)
CHEMBL283: Matrix metalloproteinase 3 (F1: 0.3379)
CHEMBL289: Cytochrome P450 2D6 (F1: 0.3315)
CHEMBL3242: Carbonic anhydrase XII (F1: 0.3229)
CHEMBL214: Serotonin 1a (5-HT1a) receptor (F1: 0.3204)
CHEMBL234: Dopamine D3 receptor (F1: 0.3204)
CHEMBL1983: Serotonin 1d (5-HT1d) receptor (F1: 0.3150)
CHEMBL4005: PI3-kinase p110-alpha subunit (F1: 0.3109)
CHEMBL2292: Dual-specificity tyrosine-phosphorylation regulated kinase 1A (F1: 0.3096)
CHEMBL321: Matrix metalloproteinase 9 (F1: 0.3056)
CHEMBL211: Muscarinic acetylcholine receptor M2 (F1: 0.3030)
```
#### Classes with Poor Performance (0.1<F1<0.3)
```
CHEMBL301: Cyclin-dependent kinase 2 (F1: 0.2981)
CHEMBL251: Adenosine A2a receptor (F1: 0.2963)
CHEMBL332: Matrix metalloproteinase-1 (F1: 0.2959)
CHEMBL3267: PI3-kinase p110-gamma subunit (F1: 0.2880)
CHEMBL1937: Histone deacetylase 2 (F1: 0.2857)
CHEMBL2185: Serine/threonine-protein kinase Aurora-B (F1: 0.2849)
CHEMBL325: Histone deacetylase 1 (F1: 0.2799)
CHEMBL226: Adenosine A1 receptor (F1: 0.2739)
CHEMBL340: Cytochrome P450 3A4 (F1: 0.2733)
CHEMBL1865: Histone deacetylase 6 (F1: 0.2633)
CHEMBL224: Serotonin 2a (5-HT2a) receptor (F1: 0.2521)
CHEMBL225: Serotonin 2c (5-HT2c) receptor (F1: 0.2520)
CHEMBL205: Carbonic anhydrase II (F1: 0.2507)
CHEMBL232: Alpha-1b adrenergic receptor (F1: 0.2234)
CHEMBL233: Mu opioid receptor (F1: 0.2201)
CHEMBL279: Vascular endothelial growth factor receptor 2 (F1: 0.2194)
CHEMBL240: HERG (F1: 0.2188)
CHEMBL229: Alpha-1a adrenergic receptor (F1: 0.2120)
CHEMBL3397: Cytochrome P450 2C9 (F1: 0.2065)
CHEMBL261: Carbonic anhydrase I (F1: 0.1833)
CHEMBL333: Matrix metalloproteinase-2 (F1: 0.1763)
CHEMBL228: Serotonin transporter (F1: 0.1625)
CHEMBL2971: Tyrosine-protein kinase JAK2 (F1: 0.1571)
CHEMBL3594: Carbonic anhydrase IX (F1: 0.1529)
CHEMBL217: Dopamine D2 receptor (F1: 0.1306)
```
## Model Examination
You can visualize its attention heads using [BertViz](https://github.com/jessevig/bertviz) and attribution weights using [Captum](https://captum.ai/) - as [done in the base model](gbyuvd/chemselfies-base-bertmlm) in Interpretability section.
## Technical Specifications
### Model Architecture and Objective
- **Base Model**: [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm)
- **Embedding Dimension**: 320
- **Layers**: 8
- **Attention Heads**: 4
- **Hidden Size**: 320
- **Intermediate Size**: 1280 (4x Hidden Size)
- **Attention Type**: Scaled Dot Product Attention (SDPA)
- **Vocabulary Size**: 3095
- **Maximum Sequence Length**: 512
- **Output Classes**: 221
### Compute Infrastructure
#### Hardware
- Platform: Paperspace's Gradients
- Compute: Free-A4000 (16 GB GPU, 30 GB RAM, 8 vCPU)
#### Software
- Python: 3.9.13
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
- Ranger21: 0.0.1
- Selfies: 2.1.2
- RDKit: 2024.3.3
## Citation
If you find this project useful in your research and wish to cite it, please use the following BibTex entry:
```
@software{chemfie_basebertmlm,
author = {GP Bayu},
title = {{ChemFIE Base}: Pretraining A Lightweight BERT-like model on Molecular SELFIES},
url = {https://huggingface.co/gbyuvd/chemselfies-base-bertmlm},
version = {1.0},
year = {2024},
}
```
### References
```
`@article{zdrazil2023chembl,
title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
journal={Nucleic Acids Research},
year={2023},
volume={gkad1004},
doi={10.1093/nar/gkad1004}
}
@misc{chembl34,
title={ChemBL34},
year={2023},
doi={10.6019/CHEMBL.database.34}
}
@article{sorokina2021coconut,
title={COCONUT online: Collection of Open Natural Products database},
author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
journal={Journal of Cheminformatics},
volume={13},
number={1},
pages={2},
year={2021},
doi={10.1186/s13321-020-00478-9}
}
@article{krenn2020selfies,
title={Self-referencing embedded strings (SELFIES): A 100\% robust molecular string representation},
author={Krenn, Mario and H{\"a}se, Florian and Nigam, AkshatKumar and Friederich, Pascal and Aspuru-Guzik, Alan},
journal={Machine Learning: Science and Technology},
volume={1},
number={4},
pages={045024},
year={2020},
doi={10.1088/2632-2153/aba947}
}
```
## Contact & Support My Work
G Bayu (gbyuvd@proton.me)
This project has been quiet a journey for me, I’ve dedicated hours on this and I would like to improve myself, this model, and future projects. However, financial and computational constraints can be challenging.
If you find my work valuable and would like to support my journey, please consider supporting me [here](https://ko-fi.com/gbyuvd). Your support will help me cover costs for computational resources, data acquisition, and further development of this project. Any amount, big or small, is greatly appreciated and will enable me to continue learning and explore more.
Thank you for checking out this model, I am more than happy to receive any feedback, so that I can improve myself and the future model/projects I will be working on. |