phobert-base-v2-finetuned
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2000
- Accuracy: 0.9593
- F1: 0.9594
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.14 | 50 | 0.2415 | 0.9190 | 0.9192 |
No log | 0.28 | 100 | 0.1917 | 0.9378 | 0.9379 |
No log | 0.42 | 150 | 0.1861 | 0.9434 | 0.9434 |
No log | 0.56 | 200 | 0.1760 | 0.9493 | 0.9493 |
No log | 0.69 | 250 | 0.1706 | 0.9484 | 0.9484 |
No log | 0.83 | 300 | 0.1710 | 0.9467 | 0.9467 |
No log | 0.97 | 350 | 0.1609 | 0.9507 | 0.9507 |
0.2152 | 1.11 | 400 | 0.1678 | 0.9445 | 0.9446 |
0.2152 | 1.25 | 450 | 0.1626 | 0.9515 | 0.9515 |
0.2152 | 1.39 | 500 | 0.2076 | 0.9341 | 0.9343 |
0.2152 | 1.53 | 550 | 0.1559 | 0.9537 | 0.9538 |
0.2152 | 1.67 | 600 | 0.1562 | 0.9526 | 0.9526 |
0.2152 | 1.81 | 650 | 0.1377 | 0.9591 | 0.9591 |
0.2152 | 1.94 | 700 | 0.1396 | 0.9579 | 0.9580 |
0.1375 | 2.08 | 750 | 0.1526 | 0.9504 | 0.9505 |
0.1375 | 2.22 | 800 | 0.1507 | 0.9577 | 0.9577 |
0.1375 | 2.36 | 850 | 0.1485 | 0.9568 | 0.9568 |
0.1375 | 2.5 | 900 | 0.1419 | 0.9571 | 0.9572 |
0.1375 | 2.64 | 950 | 0.1552 | 0.9526 | 0.9527 |
0.1375 | 2.78 | 1000 | 0.1419 | 0.9588 | 0.9588 |
0.1375 | 2.92 | 1050 | 0.1338 | 0.9602 | 0.9602 |
0.1105 | 3.06 | 1100 | 0.1414 | 0.9599 | 0.9600 |
0.1105 | 3.19 | 1150 | 0.1420 | 0.9608 | 0.9608 |
0.1105 | 3.33 | 1200 | 0.1498 | 0.9574 | 0.9575 |
0.1105 | 3.47 | 1250 | 0.1402 | 0.9596 | 0.9596 |
0.1105 | 3.61 | 1300 | 0.1477 | 0.9596 | 0.9597 |
0.1105 | 3.75 | 1350 | 0.1362 | 0.9599 | 0.9599 |
0.1105 | 3.89 | 1400 | 0.1322 | 0.9563 | 0.9563 |
0.0916 | 4.03 | 1450 | 0.1384 | 0.9568 | 0.9569 |
0.0916 | 4.17 | 1500 | 0.1613 | 0.9596 | 0.9597 |
0.0916 | 4.31 | 1550 | 0.1509 | 0.9602 | 0.9602 |
0.0916 | 4.44 | 1600 | 0.1342 | 0.9591 | 0.9591 |
0.0916 | 4.58 | 1650 | 0.1479 | 0.9602 | 0.9602 |
0.0916 | 4.72 | 1700 | 0.1518 | 0.9588 | 0.9588 |
0.0916 | 4.86 | 1750 | 0.1474 | 0.9605 | 0.9605 |
0.0796 | 5.0 | 1800 | 0.1558 | 0.9543 | 0.9544 |
0.0796 | 5.14 | 1850 | 0.1645 | 0.9582 | 0.9582 |
0.0796 | 5.28 | 1900 | 0.1674 | 0.9577 | 0.9577 |
0.0796 | 5.42 | 1950 | 0.1669 | 0.9602 | 0.9602 |
0.0796 | 5.56 | 2000 | 0.1699 | 0.9588 | 0.9587 |
0.0796 | 5.69 | 2050 | 0.1514 | 0.9593 | 0.9594 |
0.0796 | 5.83 | 2100 | 0.1533 | 0.9568 | 0.9569 |
0.0796 | 5.97 | 2150 | 0.1577 | 0.9588 | 0.9588 |
0.0666 | 6.11 | 2200 | 0.1636 | 0.9585 | 0.9585 |
0.0666 | 6.25 | 2250 | 0.1717 | 0.9554 | 0.9555 |
0.0666 | 6.39 | 2300 | 0.1606 | 0.9563 | 0.9563 |
0.0666 | 6.53 | 2350 | 0.1649 | 0.9588 | 0.9588 |
0.0666 | 6.67 | 2400 | 0.1660 | 0.9579 | 0.9580 |
0.0666 | 6.81 | 2450 | 0.1593 | 0.9557 | 0.9558 |
0.0666 | 6.94 | 2500 | 0.1615 | 0.9577 | 0.9577 |
0.0563 | 7.08 | 2550 | 0.1848 | 0.9602 | 0.9602 |
0.0563 | 7.22 | 2600 | 0.1679 | 0.9596 | 0.9597 |
0.0563 | 7.36 | 2650 | 0.1716 | 0.9596 | 0.9596 |
0.0563 | 7.5 | 2700 | 0.1716 | 0.9585 | 0.9585 |
0.0563 | 7.64 | 2750 | 0.1888 | 0.9613 | 0.9613 |
0.0563 | 7.78 | 2800 | 0.1938 | 0.9596 | 0.9596 |
0.0563 | 7.92 | 2850 | 0.1897 | 0.9588 | 0.9588 |
0.0455 | 8.06 | 2900 | 0.1913 | 0.9554 | 0.9555 |
0.0455 | 8.19 | 2950 | 0.1874 | 0.9563 | 0.9563 |
0.0455 | 8.33 | 3000 | 0.1913 | 0.9588 | 0.9588 |
0.0455 | 8.47 | 3050 | 0.1925 | 0.9596 | 0.9596 |
0.0455 | 8.61 | 3100 | 0.1961 | 0.9577 | 0.9577 |
0.0455 | 8.75 | 3150 | 0.1904 | 0.9577 | 0.9577 |
0.0455 | 8.89 | 3200 | 0.1940 | 0.9610 | 0.9610 |
0.0389 | 9.03 | 3250 | 0.1894 | 0.9588 | 0.9588 |
0.0389 | 9.17 | 3300 | 0.1926 | 0.9596 | 0.9596 |
0.0389 | 9.31 | 3350 | 0.1977 | 0.9596 | 0.9596 |
0.0389 | 9.44 | 3400 | 0.1932 | 0.9571 | 0.9571 |
0.0389 | 9.58 | 3450 | 0.1972 | 0.9579 | 0.9580 |
0.0389 | 9.72 | 3500 | 0.1965 | 0.9577 | 0.9577 |
0.0389 | 9.86 | 3550 | 0.1996 | 0.9588 | 0.9588 |
0.0338 | 10.0 | 3600 | 0.2000 | 0.9593 | 0.9594 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.