File size: 5,314 Bytes
aeaa9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f355960
aeaa9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f00a8b
aeaa9de
 
6f00a8b
aeaa9de
 
 
 
 
 
 
 
 
 
 
6f00a8b
aeaa9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f00a8b
aeaa9de
 
 
 
 
 
6f00a8b
aeaa9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# lightning.pytorch==2.4.0
seed_everything: 42
trainer:
  accelerator: auto
  strategy:
    class_path: lightning.pytorch.strategies.DDPStrategy
    init_args:
      accelerator: null
      parallel_devices: null
      cluster_environment: null
      checkpoint_io: null
      precision_plugin: null
      ddp_comm_state: null
      ddp_comm_hook: null
      ddp_comm_wrapper: null
      model_averaging_period: null
      process_group_backend: null
      timeout: 0:30:00
      start_method: popen
      output_device: null
      dim: 0
      broadcast_buffers: true
      process_group: null
      bucket_cap_mb: 25
      find_unused_parameters: false
      check_reduction: false
      gradient_as_bucket_view: false
      static_graph: false
      delay_all_reduce_named_params: null
      param_to_hook_all_reduce: null
      mixed_precision: null
      device_mesh: null
  devices: auto
  num_nodes: 8
  precision: 32
  logger:
    class_path: lightning.pytorch.loggers.WandbLogger
    init_args:
      name: 7B_splice_reconstruction
      save_dir: logs
      version: null
      offline: false
      dir: null
      id: null
      anonymous: null
      project: MGEN_AIDO.DNA-7B_GUE
      log_model: false
      experiment: null
      prefix: ''
      checkpoint_name: null
      job_type: null
      config: null
      entity: null
      reinit: null
      tags: null
      group: null
      notes: null
      magic: null
      config_exclude_keys: null
      config_include_keys: null
      mode: null
      allow_val_change: null
      resume: null
      force: null
      tensorboard: null
      sync_tensorboard: null
      monitor_gym: null
      save_code: true
      settings: null
  callbacks:
  - class_path: lightning.pytorch.callbacks.LearningRateMonitor
    init_args:
      logging_interval: step
      log_momentum: false
      log_weight_decay: false
  - class_path: lightning.pytorch.callbacks.ModelCheckpoint # save ckpt at the end of each epoch, and save the best val_mcc ckpt
    init_args:
      dirpath: null
      filename: epoch_{epoch}-val_mcc:{val_mcc:.3f}
      monitor: val_mcc
      verbose: false
      save_last: true
      save_top_k: 1
      save_weights_only: false
      mode: max
      auto_insert_metric_name: true
      every_n_train_steps: null
      train_time_interval: null
      every_n_epochs: 1
      save_on_train_epoch_end: null
      enable_version_counter: true
  - class_path: lightning.pytorch.callbacks.early_stopping.EarlyStopping
    dict_kwargs:
      monitor: val_mcc
      mode: max
      patience: 10
  fast_dev_run: false
  max_epochs: 20
  min_epochs: null
  max_steps: -1
  min_steps: null
  max_time: null
  limit_train_batches: null
  limit_val_batches: null
  limit_test_batches: null
  limit_predict_batches: null
  overfit_batches: 0.0
  val_check_interval: null
  check_val_every_n_epoch: 1
  num_sanity_val_steps: null
  log_every_n_steps: 50
  enable_checkpointing: null
  enable_progress_bar: null
  enable_model_summary: null
  accumulate_grad_batches: 1
  gradient_clip_val: 1
  gradient_clip_algorithm: null
  deterministic: null
  benchmark: null
  inference_mode: true
  use_distributed_sampler: true
  profiler:
    class_path: lightning.pytorch.profilers.PyTorchProfiler
    init_args:
      dirpath: null
      filename: null
      group_by_input_shapes: false
      emit_nvtx: false
      export_to_chrome: true
      row_limit: 20
      sort_by_key: null
      record_module_names: true
      table_kwargs: null
      record_shapes: false
    dict_kwargs:
      profile_memory: true
  detect_anomaly: false
  barebones: false
  plugins: null
  sync_batchnorm: false
  reload_dataloaders_every_n_epochs: 0
  default_root_dir: logs
model:
  class_path: modelgenerator.tasks.SequenceClassification
  init_args:
    backbone:
      class_path: modelgenerator.backbones.aido_dna_7b
      init_args:
        from_scratch: false
        use_peft: true
        save_peft_only: true
        lora_r: 16
        lora_alpha: 32
        lora_dropout: 0.1
        config_overwrites: null
        model_init_args: null
        max_length: 402
    adapter:
      class_path: modelgenerator.adapters.MLPPoolAdapter
      init_args:
        pooling: mean_pooling
        hidden_sizes:
        - 128
        bias: true
        dropout: 0.1
        dropout_in_middle: false
    n_classes: 3
    optimizer:
      class_path: torch.optim.AdamW
      init_args:
        lr: 0.0005
        betas:
        - 0.9
        - 0.95
        eps: 1.0e-08
        weight_decay: 0.1
        amsgrad: false
        maximize: false
        foreach: null
        capturable: false
        differentiable: false
        fused: null
    lr_scheduler:
      class_path: modelgenerator.lr_schedulers.CosineWithWarmup
      init_args:
        warmup_ratio: 0.1
    use_legacy_adapter: false
    strict_loading: true
    reset_optimizer_states: false
data:
  class_path: modelgenerator.data.GUEClassification
  init_args:
    hf_name: leannmlindsey/GUE
    task: splice_reconstructed
    x_col: sequence
    y_col: label
    train_split_name: train
    test_split_name: test
    valid_split_name: null
    valid_split_size: 0.1
    batch_size: 4
    shuffle: true
    sampler: null
    num_workers: 0
    pin_memory: true
    persistent_workers: false
ckpt_path: null