--- datasets: - genbio-ai/rna-downstream-tasks base_model: - genbio-ai/AIDO.RNA-1.6B license: other --- 5-fold cross-validation LoRA fine-tuned checkpoints for transcript abundance prediction (ecoli). ## How to Use ### Download model ```python from huggingface_hub import snapshot_download from pathlib import Path model_name = "genbio-ai/AIDO.RNA-1.6B-transcript-abundance-ecoli" genbio_models_path = Path.home().joinpath('genbio_models', model_name) genbio_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id=model_name, local_dir=genbio_models_path) ``` ### Load model for inference ```python from modelgenerator.tasks import SequenceRegression ckpt_path = genbio_models_path.joinpath('fold0', 'model.ckpt') model = SequenceRegression.load_from_checkpoint(ckpt_path, strict_loading=False).eval() collated_batch = model.transform({"sequences": ["ACGT", "AGCT"]}) logits = model(collated_batch) print(logits) ```