--- language: - en license: apache-2.0 datasets: - openbmb/UltraFeedback pipeline_tag: text-generation model-index: - name: GPO-Llama-3-8B-Instruct-GPM-2B results: [] --- General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197) # GPO-Llama-3-8B-Instruct-GPM-2B This model was developed using [General Preference Optimization (GPO)](https://arxiv.org/abs/2405.00675) at iteration 3 and the [General Preference representation Model (GPM)](https://arxiv.org/abs/2410.02197) (specifically, using [GPM-Gemma-2B](https://huggingface.co/general-preference/GPM-Gemma-2B)), based on the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic. ## Links to Other Models - [SPPO-Llama-3-8B-Instruct-GPM-2B](https://huggingface.co/general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B) - [GPO-Llama-3-8B-Instruct-GPM-2B](https://huggingface.co/general-preference/GPO-Llama-3-8B-Instruct-GPM-2B) ### Model Description - Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets. - Language(s) (NLP): Primarily English - License: Apache-2.0 - Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct ## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/) | Model | LC. Win Rate | Win Rate | Avg. Length | |-------------------------------------------|:------------:|:--------:|:-----------:| |[GPO-Llama-3-8B-Instruct-GPM-2B](https://huggingface.co/general-preference/GPO-Llama-3-8B-Instruct-GPM-2B) | 38.43 | 48.87 | 2613 ## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness) Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1 | | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average | |--------|---------------|----------------|------------|-------|-----------|-------|---------| |[GPO-Llama-3-8B-Instruct-GPM-2B](https://huggingface.co/general-preference/GPO-Llama-3-8B-Instruct-GPM-2B) | 61.43 | 53.54 | 75.22 | 76.12 | 78.06 | 65.65 | 68.34 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - beta: 0.001 - per_device_train_batch_size: 8 - gradient_accumulation_steps: 1 - seed: 42 - distributed_type: deepspeed_zero3 - num_devices: 8 - optimizer: RMSProp - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_train_epochs: 6.0 (stop at epoch=1.0) ## Citation ``` @article{zhang2024general, title={General Preference Modeling with Preference Representations for Aligning Language Models}, author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan}, journal={arXiv preprint arXiv:2410.02197}, year={2024} } ```