update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- automatic-speech-recognition
|
5 |
+
- geninhu/fpt-vi
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: xls-asr-vi-40h
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xls-asr-vi-40h
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GENINHU/FPT-VI - NA dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1177
|
20 |
+
- Wer: 0.6058
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-06
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 1500
|
46 |
+
- num_epochs: 50.0
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
53 |
+
| 23.3878 | 0.93 | 1500 | 21.9179 | 1.0 |
|
54 |
+
| 8.8862 | 1.85 | 3000 | 6.0599 | 1.0 |
|
55 |
+
| 4.3701 | 2.78 | 4500 | 4.3837 | 1.0 |
|
56 |
+
| 4.113 | 3.7 | 6000 | 4.2698 | 0.9982 |
|
57 |
+
| 3.9666 | 4.63 | 7500 | 3.9726 | 0.9989 |
|
58 |
+
| 3.5965 | 5.56 | 9000 | 3.7124 | 0.9975 |
|
59 |
+
| 3.3944 | 6.48 | 10500 | 3.5005 | 1.0057 |
|
60 |
+
| 3.304 | 7.41 | 12000 | 3.3710 | 1.0043 |
|
61 |
+
| 3.2482 | 8.33 | 13500 | 3.4201 | 1.0155 |
|
62 |
+
| 3.212 | 9.26 | 15000 | 3.3732 | 1.0151 |
|
63 |
+
| 3.1778 | 10.19 | 16500 | 3.2763 | 1.0009 |
|
64 |
+
| 3.1027 | 11.11 | 18000 | 3.1943 | 1.0025 |
|
65 |
+
| 2.9905 | 12.04 | 19500 | 2.8082 | 0.9703 |
|
66 |
+
| 2.7095 | 12.96 | 21000 | 2.4993 | 0.9302 |
|
67 |
+
| 2.4862 | 13.89 | 22500 | 2.3072 | 0.9140 |
|
68 |
+
| 2.3271 | 14.81 | 24000 | 2.1398 | 0.8949 |
|
69 |
+
| 2.1968 | 15.74 | 25500 | 2.0594 | 0.8817 |
|
70 |
+
| 2.111 | 16.67 | 27000 | 1.9404 | 0.8630 |
|
71 |
+
| 2.0387 | 17.59 | 28500 | 1.8895 | 0.8497 |
|
72 |
+
| 1.9504 | 18.52 | 30000 | 1.7961 | 0.8315 |
|
73 |
+
| 1.9039 | 19.44 | 31500 | 1.7433 | 0.8213 |
|
74 |
+
| 1.8342 | 20.37 | 33000 | 1.6790 | 0.7994 |
|
75 |
+
| 1.7824 | 21.3 | 34500 | 1.6291 | 0.7825 |
|
76 |
+
| 1.7359 | 22.22 | 36000 | 1.5783 | 0.7706 |
|
77 |
+
| 1.7053 | 23.15 | 37500 | 1.5248 | 0.7492 |
|
78 |
+
| 1.6504 | 24.07 | 39000 | 1.4930 | 0.7406 |
|
79 |
+
| 1.6263 | 25.0 | 40500 | 1.4572 | 0.7348 |
|
80 |
+
| 1.5893 | 25.93 | 42000 | 1.4202 | 0.7161 |
|
81 |
+
| 1.5669 | 26.85 | 43500 | 1.3987 | 0.7143 |
|
82 |
+
| 1.5277 | 27.78 | 45000 | 1.3512 | 0.6991 |
|
83 |
+
| 1.501 | 28.7 | 46500 | 1.3320 | 0.6879 |
|
84 |
+
| 1.4781 | 29.63 | 48000 | 1.3112 | 0.6788 |
|
85 |
+
| 1.4477 | 30.56 | 49500 | 1.2850 | 0.6657 |
|
86 |
+
| 1.4483 | 31.48 | 51000 | 1.2813 | 0.6633 |
|
87 |
+
| 1.4065 | 32.41 | 52500 | 1.2475 | 0.6541 |
|
88 |
+
| 1.3779 | 33.33 | 54000 | 1.2244 | 0.6503 |
|
89 |
+
| 1.3788 | 34.26 | 55500 | 1.2116 | 0.6407 |
|
90 |
+
| 1.3428 | 35.19 | 57000 | 1.1938 | 0.6352 |
|
91 |
+
| 1.3453 | 36.11 | 58500 | 1.1927 | 0.6340 |
|
92 |
+
| 1.3137 | 37.04 | 60000 | 1.1699 | 0.6252 |
|
93 |
+
| 1.2984 | 37.96 | 61500 | 1.1666 | 0.6229 |
|
94 |
+
| 1.2927 | 38.89 | 63000 | 1.1585 | 0.6188 |
|
95 |
+
| 1.2919 | 39.81 | 64500 | 1.1618 | 0.6190 |
|
96 |
+
| 1.293 | 40.74 | 66000 | 1.1479 | 0.6181 |
|
97 |
+
| 1.2853 | 41.67 | 67500 | 1.1423 | 0.6202 |
|
98 |
+
| 1.2687 | 42.59 | 69000 | 1.1315 | 0.6131 |
|
99 |
+
| 1.2603 | 43.52 | 70500 | 1.1333 | 0.6128 |
|
100 |
+
| 1.2577 | 44.44 | 72000 | 1.1191 | 0.6079 |
|
101 |
+
| 1.2435 | 45.37 | 73500 | 1.1177 | 0.6079 |
|
102 |
+
| 1.251 | 46.3 | 75000 | 1.1211 | 0.6092 |
|
103 |
+
| 1.2482 | 47.22 | 76500 | 1.1177 | 0.6060 |
|
104 |
+
| 1.2422 | 48.15 | 78000 | 1.1227 | 0.6097 |
|
105 |
+
| 1.2485 | 49.07 | 79500 | 1.1187 | 0.6071 |
|
106 |
+
| 1.2425 | 50.0 | 81000 | 1.1177 | 0.6058 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.16.0.dev0
|
112 |
+
- Pytorch 1.10.1+cu102
|
113 |
+
- Datasets 1.17.1.dev0
|
114 |
+
- Tokenizers 0.11.0
|