geovanyuribe commited on
Commit
d4db1ef
·
1 Parent(s): bde73a6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.92 +/- 20.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b49a7ff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b49a83040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b49a830d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b49a83160>", "_build": "<function ActorCriticPolicy._build at 0x7f4b49a831f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b49a83280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b49a83310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b49a833a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b49a83430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b49a834c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b49a83550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b49a835e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4b49a82680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682018864876944371, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZrGz0wFsc+FLYdvP5xqb7OQ848QFxsvQAAAAAAAAAA5iIovbegBL3qqMQ8GkiGvfgzqT2Qh2g+AACAPwAAgD8AXjS90u6Auwv51btBg4Y8sSfPPPvlZr0AAIA/AACAP02CEz3iwkc/czeIPXIu/r5bkXo8O0jaPQAAAAAAAAAAZtapuxTur7jvHzG4mlZNs1LCGTym6Fg3AACAPwAAgD8axAM968iqPRbiSr5asTC+eWUYvdAc+LoAAAAAAAAAAJqaxb16WS4+otBDPlfOnL4rIY495yKivQAAAAAAAAAAZrbxu2fXNz5iVeG9JUl8vpEnjjuuW4m9AAAAAAAAAADNM4899lRsunB/ULhqKpuzax8tOgawcTcAAIA/AAAAAA2yp70pQhk79dD2PCUUr7ul2zU7FQwbvgAAAAAAAIA/MxscPX5+oj0xusG9RLcSvsWTybt8foa9AAAAAAAAAABzTeI9+JrPPI8Io72AOGm+xUgcPXKqeL0AAAAAAAAAALOYub3DyWW6VYppM29xtK8R02G76GTFswAAgD8AAIA/phvovak+Fz4F/VA+TiKQvr5C7z1SxKc9AAAAAAAAAADtdCE+v4kHPwVYwrzDGbi+ksrkPWJjGL0AAAAAAAAAAI1El70fk7K7qZAqu+alZT2XK+S84AFOOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFXKlnoUtckCUhpRSlIwBbJRNAwGMAXSUR0CWDJwn6VMVdX2UKGgGaAloD0MILNMvEe+rbUCUhpRSlGgVS+5oFkdAlg0W6bvw3HV9lChoBmgJaA9DCJ3Ul6VdBXJAlIaUUpRoFUvuaBZHQJYNRq9Gqgh1fZQoaAZoCWgPQwiUpdb7TZ9zQJSGlFKUaBVL9WgWR0CWDYALiMo+dX2UKGgGaAloD0MI7upVZLQAckCUhpRSlGgVTRsBaBZHQJYN363y7PJ1fZQoaAZoCWgPQwjh1AeSd/pyQJSGlFKUaBVL9GgWR0CWDw5i3G4rdX2UKGgGaAloD0MIPZzAdFrDbECUhpRSlGgVTQ0BaBZHQJYPWgg5imV1fZQoaAZoCWgPQwj12mysBFZxQJSGlFKUaBVNBAFoFkdAlg+X4wh4dXV9lChoBmgJaA9DCPwcHy3OdW9AlIaUUpRoFUvOaBZHQJYQptxdY4h1fZQoaAZoCWgPQwig4jjw6tluQJSGlFKUaBVNLQFoFkdAlhD/vOQhfXV9lChoBmgJaA9DCD3S4LY2Y3FAlIaUUpRoFU0bAWgWR0CWEeOgQHzIdX2UKGgGaAloD0MI4PPDCCFicECUhpRSlGgVTQgBaBZHQJYSRrTH80l1fZQoaAZoCWgPQwgPt0PDIttxQJSGlFKUaBVL8WgWR0CWEqNvOyE+dX2UKGgGaAloD0MILSXLSahJbkCUhpRSlGgVS+9oFkdAlhK3tOVPe3V9lChoBmgJaA9DCKDDfHnBj3NAlIaUUpRoFUvPaBZHQJYS9B+nZTR1fZQoaAZoCWgPQwigpSvYRv1wQJSGlFKUaBVL62gWR0CWE0O0svqUdX2UKGgGaAloD0MI11HVBBFqckCUhpRSlGgVS9hoFkdAlhPqrBCUo3V9lChoBmgJaA9DCN+kaVB0mnFAlIaUUpRoFU0JAWgWR0CWFKv5P/JedX2UKGgGaAloD0MI196nqpDTcUCUhpRSlGgVTTMBaBZHQJYWClYU34t1fZQoaAZoCWgPQwjZJD/il1RxQJSGlFKUaBVL+GgWR0CWFkKneiztdX2UKGgGaAloD0MIaAjHLLuSckCUhpRSlGgVTRcBaBZHQJYW2p97Wup1fZQoaAZoCWgPQwiyuWqeoxVvQJSGlFKUaBVL6mgWR0CWFyEIPbwjdX2UKGgGaAloD0MIsDcxJKevcUCUhpRSlGgVTREBaBZHQJYXOkqMFU11fZQoaAZoCWgPQwjedMsO8UpxQJSGlFKUaBVL/mgWR0CWGR1e0G/vdX2UKGgGaAloD0MINpAuNu3vcECUhpRSlGgVTSABaBZHQJYZNgfEGaB1fZQoaAZoCWgPQwj3cwry8+5wQJSGlFKUaBVL9GgWR0CWGZ5O8CgcdX2UKGgGaAloD0MIJlMFo5KhckCUhpRSlGgVS+xoFkdAlhm6UFB6bHV9lChoBmgJaA9DCMy0/SvrYHNAlIaUUpRoFUv1aBZHQJYZurhisn11fZQoaAZoCWgPQwgHl445D8tyQJSGlFKUaBVNHQFoFkdAlhpl1bJOnHV9lChoBmgJaA9DCJdWQ+IegnBAlIaUUpRoFUv/aBZHQJYalbNbC791fZQoaAZoCWgPQwgsuYrFbw1tQJSGlFKUaBVL+GgWR0CWGy9tuUD/dX2UKGgGaAloD0MIFeKReLmlcUCUhpRSlGgVS/poFkdAlhxk1Q66rnV9lChoBmgJaA9DCDmc+dWcfWRAlIaUUpRoFU3oA2gWR0CWHNxnWattdX2UKGgGaAloD0MItoKmJdaOYECUhpRSlGgVTegDaBZHQJYdDlZHNHJ1fZQoaAZoCWgPQwhmEYqtoLlEQJSGlFKUaBVLs2gWR0CWHSZzPrv9dX2UKGgGaAloD0MI0SNGz22CckCUhpRSlGgVS+FoFkdAlh1geV9nb3V9lChoBmgJaA9DCHrkDwaeLlRAlIaUUpRoFUvJaBZHQJYd5eMQ2/B1fZQoaAZoCWgPQwgKuyh6IMJxQJSGlFKUaBVL/WgWR0CWNAPmxMWXdX2UKGgGaAloD0MIwk1GlaEickCUhpRSlGgVTRMBaBZHQJY0DL/0dzZ1fZQoaAZoCWgPQwg/yR020alyQJSGlFKUaBVL0mgWR0CWNSmITGo8dX2UKGgGaAloD0MICvKzkauHcUCUhpRSlGgVS91oFkdAljWR1gYxcnV9lChoBmgJaA9DCNp0BHDzknNAlIaUUpRoFU0BAWgWR0CWNfqvvBrOdX2UKGgGaAloD0MIj46rkZ1AcECUhpRSlGgVS+5oFkdAljYF7IDHO3V9lChoBmgJaA9DCFlPrb76i3FAlIaUUpRoFUvgaBZHQJY2c5U96kZ1fZQoaAZoCWgPQwgCSG3i5KhwQJSGlFKUaBVNEwFoFkdAljaCYkVvdnV9lChoBmgJaA9DCE7tDFOblnNAlIaUUpRoFUvxaBZHQJY3THAAQxx1fZQoaAZoCWgPQwgU7L/ODdVyQJSGlFKUaBVNCgFoFkdAljdLT2FnI3V9lChoBmgJaA9DCL3+JD73PXFAlIaUUpRoFUvSaBZHQJY3eGQCCBh1fZQoaAZoCWgPQwgaijvepEJyQJSGlFKUaBVLzmgWR0CWN7nrIHTrdX2UKGgGaAloD0MIgJ4GDJJpc0CUhpRSlGgVS+5oFkdAljfjtoi9qXV9lChoBmgJaA9DCP8JLlZU03JAlIaUUpRoFUvmaBZHQJY4HFKkEcN1fZQoaAZoCWgPQwhzZyYYDglxQJSGlFKUaBVLzGgWR0CWOBWH1vl2dX2UKGgGaAloD0MIYhHDDiPicECUhpRSlGgVTQ8BaBZHQJY46sIVuaZ1fZQoaAZoCWgPQwjDEDl9vSZuQJSGlFKUaBVL5GgWR0CWOX0AcT8HdX2UKGgGaAloD0MItHQF2wiOcECUhpRSlGgVS/poFkdAljtCvPkaM3V9lChoBmgJaA9DCIdqSrJOqXFAlIaUUpRoFUvoaBZHQJY7spiI+GJ1fZQoaAZoCWgPQwhrup7oOtNvQJSGlFKUaBVNAQFoFkdAljv1gQYk3XV9lChoBmgJaA9DCF2/YDfsLW5AlIaUUpRoFUv5aBZHQJY8LiBGx2V1fZQoaAZoCWgPQwjlQXqKXOtwQJSGlFKUaBVL7WgWR0CWPHKeCkGidX2UKGgGaAloD0MItYzUe2qlcUCUhpRSlGgVS99oFkdAljz+YMOPNnV9lChoBmgJaA9DCATmIVO+sm5AlIaUUpRoFUvpaBZHQJY9RU70Wdp1fZQoaAZoCWgPQwhZwtoYOw5zQJSGlFKUaBVNEgFoFkdAlj1vEKmbb3V9lChoBmgJaA9DCJjArbs5InBAlIaUUpRoFU2AAWgWR0CWPdj3mFJydX2UKGgGaAloD0MIhSLdz6kJbkCUhpRSlGgVS+loFkdAlj35lBhQWXV9lChoBmgJaA9DCLddaK7TZnFAlIaUUpRoFU0TAWgWR0CWPoLZSNwSdX2UKGgGaAloD0MI6s9+pMjJcECUhpRSlGgVS/xoFkdAlj6gb+98JHV9lChoBmgJaA9DCOhM2lSdtHFAlIaUUpRoFU0BAWgWR0CWPrYaYNRWdX2UKGgGaAloD0MIwqG3eHhcUECUhpRSlGgVS9toFkdAlj68WCVbA3V9lChoBmgJaA9DCFBvRs3X9nFAlIaUUpRoFU0gAWgWR0CWPwbblA/tdX2UKGgGaAloD0MIZ195kB7XckCUhpRSlGgVTQkBaBZHQJZARvcafjF1fZQoaAZoCWgPQwgYeVkTi11wQJSGlFKUaBVL4GgWR0CWQUZ3cHnmdX2UKGgGaAloD0MIj2/vGnRLcUCUhpRSlGgVS9poFkdAlkGFPN3W4HV9lChoBmgJaA9DCLSR66YUoXJAlIaUUpRoFUvxaBZHQJZB8vexfOV1fZQoaAZoCWgPQwhgcw6eCTJwQJSGlFKUaBVL9GgWR0CWQncbiqACdX2UKGgGaAloD0MIpI6Oq5EwcUCUhpRSlGgVS95oFkdAlkKnPNVzZHV9lChoBmgJaA9DCFqEYivoK3JAlIaUUpRoFU03AWgWR0CWQ0MINVindX2UKGgGaAloD0MIXwg5738Ib0CUhpRSlGgVS/BoFkdAlkNR2KVIJHV9lChoBmgJaA9DCF4Ou+8YXnBAlIaUUpRoFU0DAWgWR0CWQ2kPMB6sdX2UKGgGaAloD0MIfCk8aHYxcECUhpRSlGgVS+doFkdAlkN7QTmGNHV9lChoBmgJaA9DCMiZJmw/8UVAlIaUUpRoFUu7aBZHQJZDsaIeo1l1fZQoaAZoCWgPQwh3oE559OtuQJSGlFKUaBVLzmgWR0CWQ8diDujRdX2UKGgGaAloD0MIlPqytBMHckCUhpRSlGgVS9poFkdAlkPaLKmsNnV9lChoBmgJaA9DCKvrUE1Jbm9AlIaUUpRoFUv+aBZHQJZEGksSTQp1fZQoaAZoCWgPQwgmcOtuXqRwQJSGlFKUaBVL5mgWR0CWRDMspXp4dX2UKGgGaAloD0MIjLysiYVucECUhpRSlGgVTQUBaBZHQJZE6q7yxzJ1fZQoaAZoCWgPQwhJD0OrEwVyQJSGlFKUaBVL5WgWR0CWRcwaR6njdX2UKGgGaAloD0MIgXaHFIPUckCUhpRSlGgVS91oFkdAlkbKSowVTXV9lChoBmgJaA9DCBR7aB9rd3NAlIaUUpRoFUvzaBZHQJZH31h9b5d1fZQoaAZoCWgPQwhHrwYozbFxQJSGlFKUaBVNDgFoFkdAlkfxPfsNUnV9lChoBmgJaA9DCHUfgNQmPHFAlIaUUpRoFUvQaBZHQJZIRGtp22Z1fZQoaAZoCWgPQwi1jT9R2WZNQJSGlFKUaBVLvGgWR0CWSGFCswL3dX2UKGgGaAloD0MIJegv9AilcECUhpRSlGgVS8hoFkdAlkinQY1pCnV9lChoBmgJaA9DCJpfzQGCU3FAlIaUUpRoFUv+aBZHQJZI8mCyyD91fZQoaAZoCWgPQwireY7It/lwQJSGlFKUaBVL2WgWR0CWSQCdz4lAdX2UKGgGaAloD0MIdhw/VNqEcECUhpRSlGgVS9hoFkdAlklwElme2HV9lChoBmgJaA9DCI7qdCDrxHBAlIaUUpRoFU0CAWgWR0CWSaNO/L1VdX2UKGgGaAloD0MITpoGRbMjc0CUhpRSlGgVTScBaBZHQJZJym65Gz91fZQoaAZoCWgPQwjWrZ6THhByQJSGlFKUaBVNCwFoFkdAlkrOB+Wnj3V9lChoBmgJaA9DCNpXHqSn/HBAlIaUUpRoFUvpaBZHQJZK2rYGt6p1fZQoaAZoCWgPQwhpAkUs4sJzQJSGlFKUaBVNTAFoFkdAlkuA/oq0+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aa11d2aebd0e22024801bb183d3e119e46473ac0152a142103bc84ec393436b
3
+ size 147311
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b49a7ff70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b49a83040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b49a830d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b49a83160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4b49a831f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4b49a83280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b49a83310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b49a833a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4b49a83430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b49a834c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b49a83550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b49a835e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f4b49a82680>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682018864876944371,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZrGz0wFsc+FLYdvP5xqb7OQ848QFxsvQAAAAAAAAAA5iIovbegBL3qqMQ8GkiGvfgzqT2Qh2g+AACAPwAAgD8AXjS90u6Auwv51btBg4Y8sSfPPPvlZr0AAIA/AACAP02CEz3iwkc/czeIPXIu/r5bkXo8O0jaPQAAAAAAAAAAZtapuxTur7jvHzG4mlZNs1LCGTym6Fg3AACAPwAAgD8axAM968iqPRbiSr5asTC+eWUYvdAc+LoAAAAAAAAAAJqaxb16WS4+otBDPlfOnL4rIY495yKivQAAAAAAAAAAZrbxu2fXNz5iVeG9JUl8vpEnjjuuW4m9AAAAAAAAAADNM4899lRsunB/ULhqKpuzax8tOgawcTcAAIA/AAAAAA2yp70pQhk79dD2PCUUr7ul2zU7FQwbvgAAAAAAAIA/MxscPX5+oj0xusG9RLcSvsWTybt8foa9AAAAAAAAAABzTeI9+JrPPI8Io72AOGm+xUgcPXKqeL0AAAAAAAAAALOYub3DyWW6VYppM29xtK8R02G76GTFswAAgD8AAIA/phvovak+Fz4F/VA+TiKQvr5C7z1SxKc9AAAAAAAAAADtdCE+v4kHPwVYwrzDGbi+ksrkPWJjGL0AAAAAAAAAAI1El70fk7K7qZAqu+alZT2XK+S84AFOOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFXKlnoUtckCUhpRSlIwBbJRNAwGMAXSUR0CWDJwn6VMVdX2UKGgGaAloD0MILNMvEe+rbUCUhpRSlGgVS+5oFkdAlg0W6bvw3HV9lChoBmgJaA9DCJ3Ul6VdBXJAlIaUUpRoFUvuaBZHQJYNRq9Gqgh1fZQoaAZoCWgPQwiUpdb7TZ9zQJSGlFKUaBVL9WgWR0CWDYALiMo+dX2UKGgGaAloD0MI7upVZLQAckCUhpRSlGgVTRsBaBZHQJYN363y7PJ1fZQoaAZoCWgPQwjh1AeSd/pyQJSGlFKUaBVL9GgWR0CWDw5i3G4rdX2UKGgGaAloD0MIPZzAdFrDbECUhpRSlGgVTQ0BaBZHQJYPWgg5imV1fZQoaAZoCWgPQwj12mysBFZxQJSGlFKUaBVNBAFoFkdAlg+X4wh4dXV9lChoBmgJaA9DCPwcHy3OdW9AlIaUUpRoFUvOaBZHQJYQptxdY4h1fZQoaAZoCWgPQwig4jjw6tluQJSGlFKUaBVNLQFoFkdAlhD/vOQhfXV9lChoBmgJaA9DCD3S4LY2Y3FAlIaUUpRoFU0bAWgWR0CWEeOgQHzIdX2UKGgGaAloD0MI4PPDCCFicECUhpRSlGgVTQgBaBZHQJYSRrTH80l1fZQoaAZoCWgPQwgPt0PDIttxQJSGlFKUaBVL8WgWR0CWEqNvOyE+dX2UKGgGaAloD0MILSXLSahJbkCUhpRSlGgVS+9oFkdAlhK3tOVPe3V9lChoBmgJaA9DCKDDfHnBj3NAlIaUUpRoFUvPaBZHQJYS9B+nZTR1fZQoaAZoCWgPQwigpSvYRv1wQJSGlFKUaBVL62gWR0CWE0O0svqUdX2UKGgGaAloD0MI11HVBBFqckCUhpRSlGgVS9hoFkdAlhPqrBCUo3V9lChoBmgJaA9DCN+kaVB0mnFAlIaUUpRoFU0JAWgWR0CWFKv5P/JedX2UKGgGaAloD0MI196nqpDTcUCUhpRSlGgVTTMBaBZHQJYWClYU34t1fZQoaAZoCWgPQwjZJD/il1RxQJSGlFKUaBVL+GgWR0CWFkKneiztdX2UKGgGaAloD0MIaAjHLLuSckCUhpRSlGgVTRcBaBZHQJYW2p97Wup1fZQoaAZoCWgPQwiyuWqeoxVvQJSGlFKUaBVL6mgWR0CWFyEIPbwjdX2UKGgGaAloD0MIsDcxJKevcUCUhpRSlGgVTREBaBZHQJYXOkqMFU11fZQoaAZoCWgPQwjedMsO8UpxQJSGlFKUaBVL/mgWR0CWGR1e0G/vdX2UKGgGaAloD0MINpAuNu3vcECUhpRSlGgVTSABaBZHQJYZNgfEGaB1fZQoaAZoCWgPQwj3cwry8+5wQJSGlFKUaBVL9GgWR0CWGZ5O8CgcdX2UKGgGaAloD0MIJlMFo5KhckCUhpRSlGgVS+xoFkdAlhm6UFB6bHV9lChoBmgJaA9DCMy0/SvrYHNAlIaUUpRoFUv1aBZHQJYZurhisn11fZQoaAZoCWgPQwgHl445D8tyQJSGlFKUaBVNHQFoFkdAlhpl1bJOnHV9lChoBmgJaA9DCJdWQ+IegnBAlIaUUpRoFUv/aBZHQJYalbNbC791fZQoaAZoCWgPQwgsuYrFbw1tQJSGlFKUaBVL+GgWR0CWGy9tuUD/dX2UKGgGaAloD0MIFeKReLmlcUCUhpRSlGgVS/poFkdAlhxk1Q66rnV9lChoBmgJaA9DCDmc+dWcfWRAlIaUUpRoFU3oA2gWR0CWHNxnWattdX2UKGgGaAloD0MItoKmJdaOYECUhpRSlGgVTegDaBZHQJYdDlZHNHJ1fZQoaAZoCWgPQwhmEYqtoLlEQJSGlFKUaBVLs2gWR0CWHSZzPrv9dX2UKGgGaAloD0MI0SNGz22CckCUhpRSlGgVS+FoFkdAlh1geV9nb3V9lChoBmgJaA9DCHrkDwaeLlRAlIaUUpRoFUvJaBZHQJYd5eMQ2/B1fZQoaAZoCWgPQwgKuyh6IMJxQJSGlFKUaBVL/WgWR0CWNAPmxMWXdX2UKGgGaAloD0MIwk1GlaEickCUhpRSlGgVTRMBaBZHQJY0DL/0dzZ1fZQoaAZoCWgPQwg/yR020alyQJSGlFKUaBVL0mgWR0CWNSmITGo8dX2UKGgGaAloD0MICvKzkauHcUCUhpRSlGgVS91oFkdAljWR1gYxcnV9lChoBmgJaA9DCNp0BHDzknNAlIaUUpRoFU0BAWgWR0CWNfqvvBrOdX2UKGgGaAloD0MIj46rkZ1AcECUhpRSlGgVS+5oFkdAljYF7IDHO3V9lChoBmgJaA9DCFlPrb76i3FAlIaUUpRoFUvgaBZHQJY2c5U96kZ1fZQoaAZoCWgPQwgCSG3i5KhwQJSGlFKUaBVNEwFoFkdAljaCYkVvdnV9lChoBmgJaA9DCE7tDFOblnNAlIaUUpRoFUvxaBZHQJY3THAAQxx1fZQoaAZoCWgPQwgU7L/ODdVyQJSGlFKUaBVNCgFoFkdAljdLT2FnI3V9lChoBmgJaA9DCL3+JD73PXFAlIaUUpRoFUvSaBZHQJY3eGQCCBh1fZQoaAZoCWgPQwgaijvepEJyQJSGlFKUaBVLzmgWR0CWN7nrIHTrdX2UKGgGaAloD0MIgJ4GDJJpc0CUhpRSlGgVS+5oFkdAljfjtoi9qXV9lChoBmgJaA9DCP8JLlZU03JAlIaUUpRoFUvmaBZHQJY4HFKkEcN1fZQoaAZoCWgPQwhzZyYYDglxQJSGlFKUaBVLzGgWR0CWOBWH1vl2dX2UKGgGaAloD0MIYhHDDiPicECUhpRSlGgVTQ8BaBZHQJY46sIVuaZ1fZQoaAZoCWgPQwjDEDl9vSZuQJSGlFKUaBVL5GgWR0CWOX0AcT8HdX2UKGgGaAloD0MItHQF2wiOcECUhpRSlGgVS/poFkdAljtCvPkaM3V9lChoBmgJaA9DCIdqSrJOqXFAlIaUUpRoFUvoaBZHQJY7spiI+GJ1fZQoaAZoCWgPQwhrup7oOtNvQJSGlFKUaBVNAQFoFkdAljv1gQYk3XV9lChoBmgJaA9DCF2/YDfsLW5AlIaUUpRoFUv5aBZHQJY8LiBGx2V1fZQoaAZoCWgPQwjlQXqKXOtwQJSGlFKUaBVL7WgWR0CWPHKeCkGidX2UKGgGaAloD0MItYzUe2qlcUCUhpRSlGgVS99oFkdAljz+YMOPNnV9lChoBmgJaA9DCATmIVO+sm5AlIaUUpRoFUvpaBZHQJY9RU70Wdp1fZQoaAZoCWgPQwhZwtoYOw5zQJSGlFKUaBVNEgFoFkdAlj1vEKmbb3V9lChoBmgJaA9DCJjArbs5InBAlIaUUpRoFU2AAWgWR0CWPdj3mFJydX2UKGgGaAloD0MIhSLdz6kJbkCUhpRSlGgVS+loFkdAlj35lBhQWXV9lChoBmgJaA9DCLddaK7TZnFAlIaUUpRoFU0TAWgWR0CWPoLZSNwSdX2UKGgGaAloD0MI6s9+pMjJcECUhpRSlGgVS/xoFkdAlj6gb+98JHV9lChoBmgJaA9DCOhM2lSdtHFAlIaUUpRoFU0BAWgWR0CWPrYaYNRWdX2UKGgGaAloD0MIwqG3eHhcUECUhpRSlGgVS9toFkdAlj68WCVbA3V9lChoBmgJaA9DCFBvRs3X9nFAlIaUUpRoFU0gAWgWR0CWPwbblA/tdX2UKGgGaAloD0MIZ195kB7XckCUhpRSlGgVTQkBaBZHQJZARvcafjF1fZQoaAZoCWgPQwgYeVkTi11wQJSGlFKUaBVL4GgWR0CWQUZ3cHnmdX2UKGgGaAloD0MIj2/vGnRLcUCUhpRSlGgVS9poFkdAlkGFPN3W4HV9lChoBmgJaA9DCLSR66YUoXJAlIaUUpRoFUvxaBZHQJZB8vexfOV1fZQoaAZoCWgPQwhgcw6eCTJwQJSGlFKUaBVL9GgWR0CWQncbiqACdX2UKGgGaAloD0MIpI6Oq5EwcUCUhpRSlGgVS95oFkdAlkKnPNVzZHV9lChoBmgJaA9DCFqEYivoK3JAlIaUUpRoFU03AWgWR0CWQ0MINVindX2UKGgGaAloD0MIXwg5738Ib0CUhpRSlGgVS/BoFkdAlkNR2KVIJHV9lChoBmgJaA9DCF4Ou+8YXnBAlIaUUpRoFU0DAWgWR0CWQ2kPMB6sdX2UKGgGaAloD0MIfCk8aHYxcECUhpRSlGgVS+doFkdAlkN7QTmGNHV9lChoBmgJaA9DCMiZJmw/8UVAlIaUUpRoFUu7aBZHQJZDsaIeo1l1fZQoaAZoCWgPQwh3oE559OtuQJSGlFKUaBVLzmgWR0CWQ8diDujRdX2UKGgGaAloD0MIlPqytBMHckCUhpRSlGgVS9poFkdAlkPaLKmsNnV9lChoBmgJaA9DCKvrUE1Jbm9AlIaUUpRoFUv+aBZHQJZEGksSTQp1fZQoaAZoCWgPQwgmcOtuXqRwQJSGlFKUaBVL5mgWR0CWRDMspXp4dX2UKGgGaAloD0MIjLysiYVucECUhpRSlGgVTQUBaBZHQJZE6q7yxzJ1fZQoaAZoCWgPQwhJD0OrEwVyQJSGlFKUaBVL5WgWR0CWRcwaR6njdX2UKGgGaAloD0MIgXaHFIPUckCUhpRSlGgVS91oFkdAlkbKSowVTXV9lChoBmgJaA9DCBR7aB9rd3NAlIaUUpRoFUvzaBZHQJZH31h9b5d1fZQoaAZoCWgPQwhHrwYozbFxQJSGlFKUaBVNDgFoFkdAlkfxPfsNUnV9lChoBmgJaA9DCHUfgNQmPHFAlIaUUpRoFUvQaBZHQJZIRGtp22Z1fZQoaAZoCWgPQwi1jT9R2WZNQJSGlFKUaBVLvGgWR0CWSGFCswL3dX2UKGgGaAloD0MIJegv9AilcECUhpRSlGgVS8hoFkdAlkinQY1pCnV9lChoBmgJaA9DCJpfzQGCU3FAlIaUUpRoFUv+aBZHQJZI8mCyyD91fZQoaAZoCWgPQwireY7It/lwQJSGlFKUaBVL2WgWR0CWSQCdz4lAdX2UKGgGaAloD0MIdhw/VNqEcECUhpRSlGgVS9hoFkdAlklwElme2HV9lChoBmgJaA9DCI7qdCDrxHBAlIaUUpRoFU0CAWgWR0CWSaNO/L1VdX2UKGgGaAloD0MITpoGRbMjc0CUhpRSlGgVTScBaBZHQJZJym65Gz91fZQoaAZoCWgPQwjWrZ6THhByQJSGlFKUaBVNCwFoFkdAlkrOB+Wnj3V9lChoBmgJaA9DCNpXHqSn/HBAlIaUUpRoFUvpaBZHQJZK2rYGt6p1fZQoaAZoCWgPQwhpAkUs4sJzQJSGlFKUaBVNTAFoFkdAlkuA/oq0+nVlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 248,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def27c572921161a56c8ffb6b9df8a8e66805233e3150d3336c539cfed404fbe
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6176c58fbdbed56c893567463bf8effc354a3ce37e49abea7f8908e53ac760c
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (225 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.91548040984424, "std_reward": 20.587098994321945, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-20T19:50:29.038351"}