--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: sft_full results: [] --- # sft_full This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the healthcaremagic dataset. It achieves the following results on the evaluation set: - Loss: 1.7460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2093 | 2.8429 | 500 | 1.7462 | ### Evaluation results | Name | Checkpoint | Rouge1 | RougeL | Meteor | Bert Score | |-------------------------|------------------------------------------------------------------------------------------------------------------|---------|--------|--------|------------| | baseline instruct model | [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 0.254 | 0.128 | 0.222 | 0.747 | | full fientune from inst | [sft_llama3_instruct_full](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 0.315 | 0.189 | 0.238 | 0.782 | | lora sft from inst | [sft_llama3_instruct_lora_all](https://huggingface.co/geshijoker/HealthCareMagic_sft_llama3_instruct_lora_all) | 0.271 | 0.143 | 0.194 | 0.774 | | lora sft from base | [sft_llama3_lora_all](geshijoker/HealthCareMagic_sft_llama3_lora_all) | 0.239 | 0.113 | 0.211 | 0.735 | | qlora sft from inst | [sft_llama3_instruct_qlora_all](https://huggingface.co/geshijoker/HealthCareMagic_sft_llama3_instruct_qlora_all) | 0.137 | 0.071 | 0.102 | 0.679 | | qlora sft from base | [sft_llama3_qlora_all ](https://huggingface.co/geshijoker/HealthCareMagic_sft_llama3_qlora_all) | 0.192 | 0.090 | 0.159 | 0.718 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3