ggallipoli commited on
Commit
d7c8a70
·
verified ·
1 Parent(s): 73deaf1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text2text-generation
5
+ library_name: transformers
6
+ tags:
7
+ - style-transfer
8
+ - formality-transfer
9
+ ---
10
+ # Text Style Transfer using CycleGANs
11
+
12
+ This repository contains the models from the paper "Self-supervised Text Style Transfer using Cycle-Consistent Adversarial Networks" (ACM TIST 2024).\
13
+ The work introduces a novel approach to Text Style Transfer using CycleGANs with sequence-level supervision and Transformer architectures.
14
+
15
+ ## Available Models
16
+
17
+ ### Formality transfer
18
+ #### GYAFC dataset (Family & Relationships)
19
+
20
+ | model | checkpoint |
21
+ |:----------:|:------------------------------------------------------:|
22
+ | BART base | [informal-to-formal](https://huggingface.co/ggallipoli/bart-base_inf2for_family), [formal-to-informal](https://huggingface.co/ggallipoli/bart-base_for2inf_family) |
23
+ | BART large | [informal-to-formal](https://huggingface.co/ggallipoli/bart-large_inf2for_family), [formal-to-informal](https://huggingface.co/ggallipoli/bart-large_for2inf_family) |
24
+ | T5 small | [informal-to-formal](https://huggingface.co/ggallipoli/t5-small_inf2for_family), [formal-to-informal](https://huggingface.co/ggallipoli/t5-small_for2inf_family) |
25
+ | T5 base | [informal-to-formal](https://huggingface.co/ggallipoli/t5-base_inf2for_family), [formal-to-informal](https://huggingface.co/ggallipoli/t5-base_for2inf_family) |
26
+ | T5 large | [informal-to-formal](https://huggingface.co/ggallipoli/t5-large_inf2for_family), [formal-to-informal](https://huggingface.co/ggallipoli/t5-large_for2inf_family) |
27
+ | BERT base | [style classifier](https://huggingface.co/ggallipoli/formality_classifier_gyafc_family) |
28
+
29
+ #### GYAFC dataset (Entertainment & Music)
30
+
31
+ | model | checkpoint |
32
+ |:----------:|:------------------------------------------------------:|
33
+ | BART base | [informal-to-formal](https://huggingface.co/ggallipoli/bart-base_inf2for_music), [formal-to-informal](https://huggingface.co/ggallipoli/bart-base_for2inf_music) |
34
+ | BART large | [informal-to-formal](https://huggingface.co/ggallipoli/bart-large_inf2for_music), [formal-to-informal](https://huggingface.co/ggallipoli/bart-large_for2inf_music) |
35
+ | T5 small | [informal-to-formal](https://huggingface.co/ggallipoli/t5-small_inf2for_music), [formal-to-informal](https://huggingface.co/ggallipoli/t5-small_for2inf_music) |
36
+ | T5 base | [informal-to-formal](https://huggingface.co/ggallipoli/t5-base_inf2for_music), [formal-to-informal](https://huggingface.co/ggallipoli/t5-base_for2inf_music) |
37
+ | T5 large | [informal-to-formal](https://huggingface.co/ggallipoli/t5-large_inf2for_music), [formal-to-informal](https://huggingface.co/ggallipoli/t5-large_for2inf_music) |
38
+ | BERT base | [style classifier](https://huggingface.co/ggallipoli/formality_classifier_gyafc_music) |
39
+
40
+ ### Sentiment transfer
41
+ #### Yelp dataset
42
+
43
+ | model | checkpoint |
44
+ |:----------:|:------------------------------------------------------:|
45
+ | BART base | [negative-to-positive](https://huggingface.co/ggallipoli/bart-base_neg2pos), [positive-to-negative](https://huggingface.co/ggallipoli/bart-base_pos2neg) |
46
+ | BART large | [negative-to-positive](https://huggingface.co/ggallipoli/bart-large_neg2pos), [positive-to-negative](https://huggingface.co/ggallipoli/bart-large_pos2neg) |
47
+ | T5 small | [negative-to-positive](https://huggingface.co/ggallipoli/t5-small_neg2pos), [positive-to-negative](https://huggingface.co/ggallipoli/t5-small_pos2neg) |
48
+ | T5 base | [negative-to-positive](https://huggingface.co/ggallipoli/t5-base_neg2pos), [positive-to-negative](https://huggingface.co/ggallipoli/t5-base_pos2neg) |
49
+ | T5 large | [negative-to-positive](https://huggingface.co/ggallipoli/t5-large_neg2pos), [positive-to-negative](https://huggingface.co/ggallipoli/t5-large_pos2neg) |
50
+ | BERT base | [style classifier](https://huggingface.co/ggallipoli/sentiment_classifier_yelp) |
51
+
52
+ ## Model Description
53
+
54
+ The models implement a CycleGAN architecture for Text Style Transfer that:
55
+ - Applies self-supervision directly at sequence level
56
+ - Maintains content while transferring style attributes
57
+ - Employs pre-trained style classifiers to guide generation
58
+ - Uses Transformer-based generators and discriminators
59
+
60
+ The models achieve state-of-the-art results on both formality and sentiment transfer tasks.
61
+
62
+ ## Usage
63
+
64
+ Both generators and style classifiers can be used with the Hugging Face 🤗 transformers library:
65
+
66
+ Each generator model can be loaded as:
67
+
68
+ ```python
69
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
70
+
71
+ model = AutoModelForSeq2SeqLM.from_pretrained("[GENERATOR_MODEL]")
72
+ tokenizer = AutoTokenizer.from_pretrained("[GENERATOR_MODEL]")
73
+ ```
74
+
75
+ The style classifiers can be loaded as:
76
+
77
+ ```python
78
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
79
+
80
+ classifier = AutoModelForSequenceClassification.from_pretrained("[CLASSIFIER_MODEL]")
81
+ tokenizer = AutoTokenizer.from_pretrained("[CLASSIFIER_MODEL]")
82
+ ```
83
+
84
+ ## Citation
85
+ For more details, you can refer to the [paper](https://dl.acm.org/doi/10.1145/3678179).
86
+
87
+ ```bibtex
88
+ @article{10.1145/3678179,
89
+ author = {La Quatra, Moreno and Gallipoli, Giuseppe and Cagliero, Luca},
90
+ title = {Self-supervised Text Style Transfer Using Cycle-Consistent Adversarial Networks},
91
+ year = {2024},
92
+ issue_date = {October 2024},
93
+ publisher = {Association for Computing Machinery},
94
+ address = {New York, NY, USA},
95
+ volume = {15},
96
+ number = {5},
97
+ issn = {2157-6904},
98
+ url = {https://doi.org/10.1145/3678179},
99
+ doi = {10.1145/3678179},
100
+ journal = {ACM Trans. Intell. Syst. Technol.},
101
+ month = nov,
102
+ articleno = {110},
103
+ numpages = {38},
104
+ keywords = {Text Style Transfer, Sentiment transfer, Formality transfer, Cycle-consistent Generative Adversarial Networks, Transformers}
105
+ }
106
+ ```
107
+
108
+ ## Code
109
+
110
+ The full implementation is available at: https://github.com/gallipoligiuseppe/TST-CycleGAN.
111
+
112
+ ## License
113
+
114
+ This work is licensed under the <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.