patrickvonplaten's picture
Update README.md
7433705
---
license: apache-2.0
datasets:
- laion/laion-art
language:
- en
library_name: diffusers
pipeline_tag: image-to-image
tags:
- jax-diffusers-event
base_model: runwayml/stable-diffusion-v1-5
---
# Color-Canny CantrolNet
These are ControlNet checkpoints trained on runwayml/stable-diffusion-v1-5, using fused color and canny edge as conditioning.
You can find some example images in the following.
## Examples
#### Color examples
**prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea
**negative prompt**: text, bad anatomy, blurry, (low quality, blurry)
![images_1)](./1.png)
**prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea
**negative prompt**: text, bad anatomy, blurry, (low quality, blurry)
![images_2)](./2.png)
**prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the grass
**negative prompt**: text, bad anatomy, blurry, (low quality, blurry)
![images_3)](./3.png)
#### Brightness examples
This model also can be used to control image brightness. The following images are generated with different brightness conditioning image and controlnet strength(0.5 ~ 0.7).
![images_4)](./4.jpg)
## Limitations and Bias
- No strict control by input color
- Sometimes generate image with confusion When color description in prompt
## Training
**Dataset**
We train this model on [laion-art](https://huggingface.co/datasets/laion/laion-art) dataset with 2.6m images, the processed dataset can be found in [ghoskno/laion-art-en-colorcanny](https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny).
**Training Details**
- **Hardware**: Google Cloud TPUv4-8 VM
- **Optimizer**: AdamW
- **Train Batch Size**: 4 x 4 = 16
- **Learning rate**: 0.00001 constant
- **Gradient Accumulation Steps**: 4
- **Resolution**: 512
- **Train Steps**: 36000