giggling-squid
commited on
Commit
·
8c98a88
1
Parent(s):
b9a5f57
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.04 +/- 0.39
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71cd0c2e3fa2fd4c3da8da029cf1b08b66a2a77427e16a2a08344eb5686dfb40
|
3 |
+
size 109531
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -19,24 +21,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 1500000,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681046615214141097,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnprNPjhRojwuXgk/nprNPjhRojwuXgk/nprNPjhRojwuXgk/nprNPjhRojwuXgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAX3lIvrkhDj+sNFu9rgBDv+zTDD/764U/mXauvwbavT/wcoE+18Qjv8j/FL9lCWm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]]",
|
40 |
+
"desired_goal": "[[-0.1957755 0.55520207 -0.05351703]\n [-0.7617291 0.5501087 1.046264 ]\n [-1.3629943 1.483216 0.25283003]\n [-0.6397223 -0.5820279 -0.9102996 ]]",
|
41 |
+
"observation": "[[0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/0kPPvzC+r3RBi8+8S/sPfbivr3hu4M+/MIVPtUdTb3HmV48h41TPS2awL240pc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.13993071 -0.12244222 0.17092444]\n [ 0.11532582 -0.09320633 0.25729278]\n [ 0.14625162 -0.05007728 0.01358647]\n [ 0.05164864 -0.09404407 0.29652953]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/rrTnSee+L+UhpRSlIwBbJRLMowBdJRHQLGOVawD/2l1fZQoaAZoCWgPQwjg2/RnP1L1v5SGlFKUaBVLMmgWR0CxjjYDgZTAdX2UKGgGaAloD0MI3xXB/1by8b+UhpRSlGgVSzJoFkdAsY4YV/MGHHV9lChoBmgJaA9DCN3OvvIgvei/lIaUUpRoFUsyaBZHQLGN+FL39Jl1fZQoaAZoCWgPQwjtKw/SU+Tqv5SGlFKUaBVLMmgWR0CxjwsiW3SbdX2UKGgGaAloD0MIJJf/kH57+r+UhpRSlGgVSzJoFkdAsY7r5Lytm3V9lChoBmgJaA9DCGU1XU903eu/lIaUUpRoFUsyaBZHQLGOzrzoUzt1fZQoaAZoCWgPQwiwkSQIV0Dvv5SGlFKUaBVLMmgWR0Cxjq8wtapxdX2UKGgGaAloD0MI+dozSwJU67+UhpRSlGgVSzJoFkdAsY/dz5oGp3V9lChoBmgJaA9DCAtET8qkhvi/lIaUUpRoFUsyaBZHQLGPvnyd4FB1fZQoaAZoCWgPQwgShZZ1/1jsv5SGlFKUaBVLMmgWR0Cxj6EovzvrdX2UKGgGaAloD0MIu9Bcp5EW8L+UhpRSlGgVSzJoFkdAsY+BpPAO8XV9lChoBmgJaA9DCAQcQpWavfi/lIaUUpRoFUsyaBZHQLGQt4/NZ/11fZQoaAZoCWgPQwh5HtydtVvrv5SGlFKUaBVLMmgWR0CxkJhczImxdX2UKGgGaAloD0MImxvTE5Z447+UhpRSlGgVSzJoFkdAsZB7OY6XB3V9lChoBmgJaA9DCNQLPs3JS/i/lIaUUpRoFUsyaBZHQLGQW62v0RR1fZQoaAZoCWgPQwh/F7ZmKy/mv5SGlFKUaBVLMmgWR0CxkZXd0q6OdX2UKGgGaAloD0MIujKoNjgR6r+UhpRSlGgVSzJoFkdAsZF3F1jiGXV9lChoBmgJaA9DCDj1geSdA/C/lIaUUpRoFUsyaBZHQLGRWi8nNPh1fZQoaAZoCWgPQwhAFTduMT/vv5SGlFKUaBVLMmgWR0CxkTqoybhFdX2UKGgGaAloD0MICU/o9Sex8b+UhpRSlGgVSzJoFkdAsZKA4ku6E3V9lChoBmgJaA9DCAwiUtMuBgHAlIaUUpRoFUsyaBZHQLGSYbI91U51fZQoaAZoCWgPQwha8nhafuD0v5SGlFKUaBVLMmgWR0CxkkSVObiIdX2UKGgGaAloD0MIgNjSo6ne8b+UhpRSlGgVSzJoFkdAsZIlIvrWy3V9lChoBmgJaA9DCDCca5ih8ci/lIaUUpRoFUsyaBZHQLGTaPgeii91fZQoaAZoCWgPQwhtcvikEwnzv5SGlFKUaBVLMmgWR0Cxk0m1D0DmdX2UKGgGaAloD0MIqu/8ogT91L+UhpRSlGgVSzJoFkdAsZMslJHy3HV9lChoBmgJaA9DCHKo34WtWfG/lIaUUpRoFUsyaBZHQLGTDSRKYiR1fZQoaAZoCWgPQwjW/WMhOgT0v5SGlFKUaBVLMmgWR0CxlAJjYqXodX2UKGgGaAloD0MIswxxrItb7L+UhpRSlGgVSzJoFkdAsZPi0D2alXV9lChoBmgJaA9DCEz/klSmGOy/lIaUUpRoFUsyaBZHQLGTxUOd5IJ1fZQoaAZoCWgPQwgeUaG6ufjrv5SGlFKUaBVLMmgWR0Cxk6VRceKbdX2UKGgGaAloD0MITcCvkSQI0r+UhpRSlGgVSzJoFkdAsZSIfdRBNXV9lChoBmgJaA9DCFPKayV0l/S/lIaUUpRoFUsyaBZHQLGUaNRWLgp1fZQoaAZoCWgPQwiWlpF6T2X0v5SGlFKUaBVLMmgWR0CxlEs/pt78dX2UKGgGaAloD0MID2Q9tfpq4r+UhpRSlGgVSzJoFkdAsZQrTYukDnV9lChoBmgJaA9DCDI7i96pgOS/lIaUUpRoFUsyaBZHQLGVEFYdQwd1fZQoaAZoCWgPQwhYG2MnvITrv5SGlFKUaBVLMmgWR0CxlPCpFTegdX2UKGgGaAloD0MIH5+Qnbex+b+UhpRSlGgVSzJoFkdAsZTTEUCaJHV9lChoBmgJaA9DCCKKyRtgZue/lIaUUpRoFUsyaBZHQLGUsylN1yN1fZQoaAZoCWgPQwhh4STNH5P5v5SGlFKUaBVLMmgWR0CxlZL6tT1kdX2UKGgGaAloD0MIRBmqYir917+UhpRSlGgVSzJoFkdAsZVzTuv2XnV9lChoBmgJaA9DCBWOIJViJwHAlIaUUpRoFUsyaBZHQLGVVbKzRhN1fZQoaAZoCWgPQwhjf9k9eVj5v5SGlFKUaBVLMmgWR0CxlTXEuQIVdX2UKGgGaAloD0MIHVvPEI5Z2L+UhpRSlGgVSzJoFkdAsZYdS1mapnV9lChoBmgJaA9DCBsS91j6UOq/lIaUUpRoFUsyaBZHQLGV/a3I+4d1fZQoaAZoCWgPQwhUHAdeLXfuv5SGlFKUaBVLMmgWR0CxleAkcCHRdX2UKGgGaAloD0MIgNWRI50B7L+UhpRSlGgVSzJoFkdAsZXATBZZCHV9lChoBmgJaA9DCCtM32sIjvu/lIaUUpRoFUsyaBZHQLGWomQKa5R1fZQoaAZoCWgPQwjP9BJjmf71v5SGlFKUaBVLMmgWR0CxloKwhW5pdX2UKGgGaAloD0MINjy9UpYh7L+UhpRSlGgVSzJoFkdAsZZlGG21D3V9lChoBmgJaA9DCA2oN6PmK+u/lIaUUpRoFUsyaBZHQLGWRTewcHZ1fZQoaAZoCWgPQwiCxkyiXrDwv5SGlFKUaBVLMmgWR0CxlysyeqaPdX2UKGgGaAloD0MIRWKCGr6F7L+UhpRSlGgVSzJoFkdAsZcLkJa7mXV9lChoBmgJaA9DCARUOIJUitS/lIaUUpRoFUsyaBZHQLGW7gow22p1fZQoaAZoCWgPQwjt153uPPHvv5SGlFKUaBVLMmgWR0Cxls4nfEXMdX2UKGgGaAloD0MIWWsotRfR47+UhpRSlGgVSzJoFkdAsZe+KziS73V9lChoBmgJaA9DCGFtjJ3w0vW/lIaUUpRoFUsyaBZHQLGXnwN9YwJ1fZQoaAZoCWgPQwiLiGLyBpjnv5SGlFKUaBVLMmgWR0Cxl4GHk92YdX2UKGgGaAloD0MILv62J0is8b+UhpRSlGgVSzJoFkdAsZdhjqfOEHV9lChoBmgJaA9DCLtiRnh7EOq/lIaUUpRoFUsyaBZHQLGYP79AHFB1fZQoaAZoCWgPQwgBMnTsoNL6v5SGlFKUaBVLMmgWR0CxmCAS8J2MdX2UKGgGaAloD0MIppnudVLf77+UhpRSlGgVSzJoFkdAsZgCkJrtV3V9lChoBmgJaA9DCD/ggQGED+i/lIaUUpRoFUsyaBZHQLGX4qYqoZR1fZQoaAZoCWgPQwiR0QFJ2Dfrv5SGlFKUaBVLMmgWR0CxmLjN+so2dX2UKGgGaAloD0MIb4RFRZyO9b+UhpRSlGgVSzJoFkdAsZiZFkQPJHV9lChoBmgJaA9DCFuzlZf8z+u/lIaUUpRoFUsyaBZHQLGYe7fYSQJ1fZQoaAZoCWgPQwiWW1oNiTv5v5SGlFKUaBVLMmgWR0CxmFvn8sMBdX2UKGgGaAloD0MIpwNZT60+9b+UhpRSlGgVSzJoFkdAsZk3gsK9f3V9lChoBmgJaA9DCFggelImdfG/lIaUUpRoFUsyaBZHQLGZF9sJpnJ1fZQoaAZoCWgPQwj1DyIZcmzyv5SGlFKUaBVLMmgWR0CxmPomsvIwdX2UKGgGaAloD0MIUYiAQ6gS8b+UhpRSlGgVSzJoFkdAsZjaLhrFfnV9lChoBmgJaA9DCABw7Nlzmeu/lIaUUpRoFUsyaBZHQLGZq+/gzgx1fZQoaAZoCWgPQwj4NZIE4Yr0v5SGlFKUaBVLMmgWR0CxmYw08/2TdX2UKGgGaAloD0MIsAER4srZ9r+UhpRSlGgVSzJoFkdAsZlumHgxanV9lChoBmgJaA9DCINqgxPRr/2/lIaUUpRoFUsyaBZHQLGZTrMkhRt1fZQoaAZoCWgPQwgip6/naxb0v5SGlFKUaBVLMmgWR0Cxmil09yLidX2UKGgGaAloD0MIMLq8OVzr+L+UhpRSlGgVSzJoFkdAsZoJqveP73V9lChoBmgJaA9DCE91yM1wAwDAlIaUUpRoFUsyaBZHQLGZ6/sE7nx1fZQoaAZoCWgPQwhfe2ZJgJrtv5SGlFKUaBVLMmgWR0CxmcwPAfuDdX2UKGgGaAloD0MIeozyzMvh9L+UhpRSlGgVSzJoFkdAsZqiHHmzSnV9lChoBmgJaA9DCDGXVG03wQDAlIaUUpRoFUsyaBZHQLGagpobn5l1fZQoaAZoCWgPQwj8q8d9q3X1v5SGlFKUaBVLMmgWR0CxmmT2OAAidX2UKGgGaAloD0MIx2gdVU2Q8b+UhpRSlGgVSzJoFkdAsZpFIEr5I3V9lChoBmgJaA9DCBReglMfyPG/lIaUUpRoFUsyaBZHQLGbHvkRzzV1fZQoaAZoCWgPQwgPCd/7GzT4v5SGlFKUaBVLMmgWR0Cxmv8wQDmsdX2UKGgGaAloD0MIGapiKv1E9b+UhpRSlGgVSzJoFkdAsZrhkf9xZXV9lChoBmgJaA9DCNjviXWq/OW/lIaUUpRoFUsyaBZHQLGawZVn27F1fZQoaAZoCWgPQwhqhlRRvMrev5SGlFKUaBVLMmgWR0Cxm55LEk0KdX2UKGgGaAloD0MI3/yGiQap5b+UhpRSlGgVSzJoFkdAsZt+nMt9QXV9lChoBmgJaA9DCEEsmzkkNey/lIaUUpRoFUsyaBZHQLGbYROk+HJ1fZQoaAZoCWgPQwieYtUgzO3vv5SGlFKUaBVLMmgWR0Cxm0FfAsTWdX2UKGgGaAloD0MIaeId4EmL6b+UhpRSlGgVSzJoFkdAsZwwAS39aXV9lChoBmgJaA9DCD6uDRXjPP6/lIaUUpRoFUsyaBZHQLGcEMcp9Z11fZQoaAZoCWgPQwhMNbOWApL5v5SGlFKUaBVLMmgWR0Cxm/MguAZsdX2UKGgGaAloD0MIbTZWYp7V8b+UhpRSlGgVSzJoFkdAsZvTO6d1+3V9lChoBmgJaA9DCPcdw2M/i/O/lIaUUpRoFUsyaBZHQLGcuFo+Ofd1fZQoaAZoCWgPQwjxg/OpY5Xyv5SGlFKUaBVLMmgWR0CxnJjDO1OTdX2UKGgGaAloD0MI3h0Zq83/67+UhpRSlGgVSzJoFkdAsZx7HMlkY3V9lChoBmgJaA9DCC2Xjc75qeO/lIaUUpRoFUsyaBZHQLGcW0GNaQp1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 46875,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9084054874049617c095603389d8b8a6b308b60e113428c1d76727fe4711815b
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41d655c8d742b7afb345b15cb7b86a28ebd52bf1ed054c958debd8eacda828f0
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4b55674c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe4b5569280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681043395020777450, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhbnOPqCeg73L9+Q+hbnOPqCeg73L9+Q+hbnOPqCeg73L9+Q+hbnOPqCeg73L9+Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA99yLPqYsxr/Zfbq/EumPPfRJGT9t5oE/t+eVPySGu75efwu/x4QDPXmdYb9o7TI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFuc4+oJ6Dvcv35D76aJu7NIufu3nhCjyFuc4+oJ6Dvcv35D76aJu7NIufu3nhCjyFuc4+oJ6Dvcv35D76aJu7NIufu3nhCjyFuc4+oJ6Dvcv35D76aJu7NIufu3nhCjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40375915 -0.0642674 0.447203 ]\n [ 0.40375915 -0.0642674 0.447203 ]\n [ 0.40375915 -0.0642674 0.447203 ]\n [ 0.40375915 -0.0642674 0.447203 ]]", "desired_goal": "[[ 0.2731702 -1.5482376 -1.4569656 ]\n [ 0.07026877 0.5987847 1.0148445 ]\n [ 1.1711339 -0.3662578 -0.5449122 ]\n [ 0.03210905 -0.8813091 0.69893503]]", "observation": "[[ 0.40375915 -0.0642674 0.447203 -0.00474274 -0.00486889 0.00847661]\n [ 0.40375915 -0.0642674 0.447203 -0.00474274 -0.00486889 0.00847661]\n [ 0.40375915 -0.0642674 0.447203 -0.00474274 -0.00486889 0.00847661]\n [ 0.40375915 -0.0642674 0.447203 -0.00474274 -0.00486889 0.00847661]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6NnDPWV8yb3EKEg96P+AvfV7oD2bXjc89ekUPpYQir0IpSE+GqNLvZTVzr2EFLg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09563047 -0.09838179 0.048867 ]\n [-0.0629881 0.07836143 0.01119199]\n [ 0.14542373 -0.06741445 0.1578561 ]\n [-0.04971609 -0.10099331 0.08988288]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO4pz1NHxDsCUhpRSlIwBbJRLMowBdJRHQKaWbGNJe3R1fZQoaAZoCWgPQwhyjGSPUBMFwJSGlFKUaBVLMmgWR0CmljMFlkH2dX2UKGgGaAloD0MIQ8h5/x8nBsCUhpRSlGgVSzJoFkdAppX4LgGbC3V9lChoBmgJaA9DCAYTfxR19hXAlIaUUpRoFUsyaBZHQKaVtmGM4tJ1fZQoaAZoCWgPQwgAPKJCdRMHwJSGlFKUaBVLMmgWR0CmmBKagElmdX2UKGgGaAloD0MIdqp8z0jEDcCUhpRSlGgVSzJoFkdAppfYcghbGHV9lChoBmgJaA9DCAwCK4cW2Q3AlIaUUpRoFUsyaBZHQKaXngDzRQd1fZQoaAZoCWgPQwhR9pZyvsgTwJSGlFKUaBVLMmgWR0Cml1yLAHmjdX2UKGgGaAloD0MIYvTcQldiBsCUhpRSlGgVSzJoFkdAppmScI7eVXV9lChoBmgJaA9DCH0Facai2RHAlIaUUpRoFUsyaBZHQKaZWGL1mJ51fZQoaAZoCWgPQwj76qpALcYOwJSGlFKUaBVLMmgWR0CmmR2ys0YTdX2UKGgGaAloD0MIxy5RvTUQD8CUhpRSlGgVSzJoFkdAppjcGiYb83V9lChoBmgJaA9DCPw07s1v2A3AlIaUUpRoFUsyaBZHQKabBdkauOl1fZQoaAZoCWgPQwgLXvQVpEkUwJSGlFKUaBVLMmgWR0CmmsucMEzPdX2UKGgGaAloD0MIKH/3jhrzD8CUhpRSlGgVSzJoFkdAppqQ20iQk3V9lChoBmgJaA9DCBhftMcLiQfAlIaUUpRoFUsyaBZHQKaaT1qWTot1fZQoaAZoCWgPQwj/WIgOgSMEwJSGlFKUaBVLMmgWR0CmnFgkcCHRdX2UKGgGaAloD0MIDr3Fw3uOCsCUhpRSlGgVSzJoFkdAppwdbiZOSHV9lChoBmgJaA9DCNB+pIgMSwjAlIaUUpRoFUsyaBZHQKab4i+L3sZ1fZQoaAZoCWgPQwgjTbwDPCkRwJSGlFKUaBVLMmgWR0Cmm6AFPi1idX2UKGgGaAloD0MIt/C8VGzsCcCUhpRSlGgVSzJoFkdApp07vAoG6nV9lChoBmgJaA9DCGowDcNH5A/AlIaUUpRoFUsyaBZHQKadAO4G2Th1fZQoaAZoCWgPQwjPhZFe1M4HwJSGlFKUaBVLMmgWR0CmnMWSlnAZdX2UKGgGaAloD0MIrMq+K4KPGcCUhpRSlGgVSzJoFkdAppyDWoWHlHV9lChoBmgJaA9DCFN5O8JpsRDAlIaUUpRoFUsyaBZHQKaeSeNkvsZ1fZQoaAZoCWgPQwj7kSIyrMIJwJSGlFKUaBVLMmgWR0Cmng8hs67vdX2UKGgGaAloD0MIk1SmmIMg+L+UhpRSlGgVSzJoFkdApp3U4ecQRXV9lChoBmgJaA9DCK1RD9HozgjAlIaUUpRoFUsyaBZHQKadksV+I/J1fZQoaAZoCWgPQwic+dUcIJgMwJSGlFKUaBVLMmgWR0Cmn0SXdCVsdX2UKGgGaAloD0MIeQYN/RPcDsCUhpRSlGgVSzJoFkdApp8KRnvlVHV9lChoBmgJaA9DCPbSFAFOTw/AlIaUUpRoFUsyaBZHQKaezx6v7nB1fZQoaAZoCWgPQwjeH+9VK9MDwJSGlFKUaBVLMmgWR0Cmno1ObiIddX2UKGgGaAloD0MISIrIsIoXD8CUhpRSlGgVSzJoFkdApqAz+NtIkXV9lChoBmgJaA9DCHe9NEWA0wjAlIaUUpRoFUsyaBZHQKaf+UQCjlB1fZQoaAZoCWgPQwi3f2WlSWkOwJSGlFKUaBVLMmgWR0Cmn74LCvX9dX2UKGgGaAloD0MIwJSBA1o6A8CUhpRSlGgVSzJoFkdApp977Gecx3V9lChoBmgJaA9DCFPovMYuoRHAlIaUUpRoFUsyaBZHQKahI5YHPeJ1fZQoaAZoCWgPQwgK8rOR68YNwJSGlFKUaBVLMmgWR0CmoOmNR3vAdX2UKGgGaAloD0MIEALyJVRQDcCUhpRSlGgVSzJoFkdApqCuSfUWmHV9lChoBmgJaA9DCFpj0Amh4xPAlIaUUpRoFUsyaBZHQKagbBfrrxB1fZQoaAZoCWgPQwh+HM2Rlf8KwJSGlFKUaBVLMmgWR0CmogHmzSkTdX2UKGgGaAloD0MI48PsZdvpCMCUhpRSlGgVSzJoFkdApqHHJJXhfnV9lChoBmgJaA9DCAXbiCe7eQ3AlIaUUpRoFUsyaBZHQKahi8Tzund1fZQoaAZoCWgPQwindRvUfisGwJSGlFKUaBVLMmgWR0CmoUmHHmzTdX2UKGgGaAloD0MIT8sPXOXpBMCUhpRSlGgVSzJoFkdApqLfj2i+L3V9lChoBmgJaA9DCKc8uhEWFQvAlIaUUpRoFUsyaBZHQKaipN4Z/Ct1fZQoaAZoCWgPQwiLql/pfNgIwJSGlFKUaBVLMmgWR0CmommJN0vHdX2UKGgGaAloD0MII4YdxqS/A8CUhpRSlGgVSzJoFkdApqInQdCE6HV9lChoBmgJaA9DCMHHYMWp9gTAlIaUUpRoFUsyaBZHQKajvOXVsk91fZQoaAZoCWgPQwgIkncOZQgLwJSGlFKUaBVLMmgWR0Cmo4JBgNPQdX2UKGgGaAloD0MIahK8IY3qEMCUhpRSlGgVSzJoFkdApqNG9QGfPHV9lChoBmgJaA9DCN+l1CXjuBDAlIaUUpRoFUsyaBZHQKajBN21Ul11fZQoaAZoCWgPQwi7Qh8sY4MLwJSGlFKUaBVLMmgWR0CmpKCT+vQodX2UKGgGaAloD0MIUI9tGXCWEMCUhpRSlGgVSzJoFkdApqRl4eLeh3V9lChoBmgJaA9DCJ0ui4nNhwbAlIaUUpRoFUsyaBZHQKakKpSaVlh1fZQoaAZoCWgPQwgpeAq5Uu8MwJSGlFKUaBVLMmgWR0Cmo+hwdbPhdX2UKGgGaAloD0MIqFFIMqt3C8CUhpRSlGgVSzJoFkdApqWCVB2OhnV9lChoBmgJaA9DCD7o2az6XA7AlIaUUpRoFUsyaBZHQKalR7Gecx11fZQoaAZoCWgPQwiKOQg6WhUGwJSGlFKUaBVLMmgWR0CmpQy+QEIPdX2UKGgGaAloD0MIkUYFTrZhDcCUhpRSlGgVSzJoFkdApqTKpo9LYnV9lChoBmgJaA9DCBwHXi13ZgnAlIaUUpRoFUsyaBZHQKamc4wRGtp1fZQoaAZoCWgPQwgxW7Iqwg0LwJSGlFKUaBVLMmgWR0CmpjkyckMTdX2UKGgGaAloD0MIPnWsUnq2EMCUhpRSlGgVSzJoFkdApqX+AVfu1HV9lChoBmgJaA9DCNS6DWq/FQrAlIaUUpRoFUsyaBZHQKalu/etSyd1fZQoaAZoCWgPQwjkTX6LTvYPwJSGlFKUaBVLMmgWR0Cmp3zfaYeDdX2UKGgGaAloD0MIN23GaYjKB8CUhpRSlGgVSzJoFkdApqdCFsYVI3V9lChoBmgJaA9DCEJ6ihwifhLAlIaUUpRoFUsyaBZHQKanBsYVIqd1fZQoaAZoCWgPQwiXkXpP5bQBwJSGlFKUaBVLMmgWR0CmpsUfHPu5dX2UKGgGaAloD0MIa+9TVWjwGcCUhpRSlGgVSzJoFkdApqhi9K28ZnV9lChoBmgJaA9DCCuhuyTOig7AlIaUUpRoFUsyaBZHQKaoKCxu89R1fZQoaAZoCWgPQwiXGwx1WOEMwJSGlFKUaBVLMmgWR0Cmp+zbnHNpdX2UKGgGaAloD0MIx5xn7Es2EcCUhpRSlGgVSzJoFkdApqeq5Gz8g3V9lChoBmgJaA9DCMHIy5pYwAnAlIaUUpRoFUsyaBZHQKapS79Q40d1fZQoaAZoCWgPQwjLZ3ke3E0QwJSGlFKUaBVLMmgWR0CmqRD4pMHsdX2UKGgGaAloD0MIFoVdFD2QEcCUhpRSlGgVSzJoFkdApqjVwBHTZ3V9lChoBmgJaA9DCCnqzD0kXAvAlIaUUpRoFUsyaBZHQKaok4J/oaF1fZQoaAZoCWgPQwhyNh0B3HwQwJSGlFKUaBVLMmgWR0CmqjICdSVGdX2UKGgGaAloD0MIF/IIbqRcEMCUhpRSlGgVSzJoFkdApqn3Y8Md93V9lChoBmgJaA9DCEHYKVYNIg3AlIaUUpRoFUsyaBZHQKapvC0F8oh1fZQoaAZoCWgPQwgqi8Iuig4SwJSGlFKUaBVLMmgWR0CmqXoMrmQsdX2UKGgGaAloD0MIOIQqNXtwEMCUhpRSlGgVSzJoFkdApqslYW+GoXV9lChoBmgJaA9DCBpPBHEeDgvAlIaUUpRoFUsyaBZHQKaq6rtE5Qx1fZQoaAZoCWgPQwiuRnalZYQFwJSGlFKUaBVLMmgWR0CmqrAp8WsSdX2UKGgGaAloD0MIVKwahLktEcCUhpRSlGgVSzJoFkdApqpuEkB0ZHV9lChoBmgJaA9DCLA73XnieRLAlIaUUpRoFUsyaBZHQKasFrrPdEd1fZQoaAZoCWgPQwhodXKG4u4HwJSGlFKUaBVLMmgWR0Cmq9w3HaN/dX2UKGgGaAloD0MIprT+lgCcDsCUhpRSlGgVSzJoFkdApquhlFtsN3V9lChoBmgJaA9DCBy0Vx8PXQbAlIaUUpRoFUsyaBZHQKarYBd2Pkt1fZQoaAZoCWgPQwgzGY7nM+ASwJSGlFKUaBVLMmgWR0CmrPlNDc/MdX2UKGgGaAloD0MIFJSilXsBE8CUhpRSlGgVSzJoFkdApqy+l0o0AXV9lChoBmgJaA9DCAQDCB9KVAjAlIaUUpRoFUsyaBZHQKasg0LMLWt1fZQoaAZoCWgPQwi1xTU+k+0QwJSGlFKUaBVLMmgWR0CmrEEfs/pudX2UKGgGaAloD0MIFoielEmdEMCUhpRSlGgVSzJoFkdApq3ebsniN3V9lChoBmgJaA9DCMJR8uocMxDAlIaUUpRoFUsyaBZHQKato8J2MbZ1fZQoaAZoCWgPQwikwW1t4RkQwJSGlFKUaBVLMmgWR0CmrWh4D9wWdX2UKGgGaAloD0MI4xdeSfI8DsCUhpRSlGgVSzJoFkdApq0mc6Nly3V9lChoBmgJaA9DCNjTDn9N9hPAlIaUUpRoFUsyaBZHQKauxWQOnVJ1fZQoaAZoCWgPQwinJVZGIx8RwJSGlFKUaBVLMmgWR0Cmroq02LpBdX2UKGgGaAloD0MI2EgShCsQEcCUhpRSlGgVSzJoFkdApq5PZRKpUHV9lChoBmgJaA9DCNbjvtU6EQrAlIaUUpRoFUsyaBZHQKauDT4tYjl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4b55674c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe4b5569280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681046615214141097, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnprNPjhRojwuXgk/nprNPjhRojwuXgk/nprNPjhRojwuXgk/nprNPjhRojwuXgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAX3lIvrkhDj+sNFu9rgBDv+zTDD/764U/mXauvwbavT/wcoE+18Qjv8j/FL9lCWm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]]", "desired_goal": "[[-0.1957755 0.55520207 -0.05351703]\n [-0.7617291 0.5501087 1.046264 ]\n [-1.3629943 1.483216 0.25283003]\n [-0.6397223 -0.5820279 -0.9102996 ]]", "observation": "[[0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/0kPPvzC+r3RBi8+8S/sPfbivr3hu4M+/MIVPtUdTb3HmV48h41TPS2awL240pc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13993071 -0.12244222 0.17092444]\n [ 0.11532582 -0.09320633 0.25729278]\n [ 0.14625162 -0.05007728 0.01358647]\n [ 0.05164864 -0.09404407 0.29652953]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/rrTnSee+L+UhpRSlIwBbJRLMowBdJRHQLGOVawD/2l1fZQoaAZoCWgPQwjg2/RnP1L1v5SGlFKUaBVLMmgWR0CxjjYDgZTAdX2UKGgGaAloD0MI3xXB/1by8b+UhpRSlGgVSzJoFkdAsY4YV/MGHHV9lChoBmgJaA9DCN3OvvIgvei/lIaUUpRoFUsyaBZHQLGN+FL39Jl1fZQoaAZoCWgPQwjtKw/SU+Tqv5SGlFKUaBVLMmgWR0CxjwsiW3SbdX2UKGgGaAloD0MIJJf/kH57+r+UhpRSlGgVSzJoFkdAsY7r5Lytm3V9lChoBmgJaA9DCGU1XU903eu/lIaUUpRoFUsyaBZHQLGOzrzoUzt1fZQoaAZoCWgPQwiwkSQIV0Dvv5SGlFKUaBVLMmgWR0Cxjq8wtapxdX2UKGgGaAloD0MI+dozSwJU67+UhpRSlGgVSzJoFkdAsY/dz5oGp3V9lChoBmgJaA9DCAtET8qkhvi/lIaUUpRoFUsyaBZHQLGPvnyd4FB1fZQoaAZoCWgPQwgShZZ1/1jsv5SGlFKUaBVLMmgWR0Cxj6EovzvrdX2UKGgGaAloD0MIu9Bcp5EW8L+UhpRSlGgVSzJoFkdAsY+BpPAO8XV9lChoBmgJaA9DCAQcQpWavfi/lIaUUpRoFUsyaBZHQLGQt4/NZ/11fZQoaAZoCWgPQwh5HtydtVvrv5SGlFKUaBVLMmgWR0CxkJhczImxdX2UKGgGaAloD0MImxvTE5Z447+UhpRSlGgVSzJoFkdAsZB7OY6XB3V9lChoBmgJaA9DCNQLPs3JS/i/lIaUUpRoFUsyaBZHQLGQW62v0RR1fZQoaAZoCWgPQwh/F7ZmKy/mv5SGlFKUaBVLMmgWR0CxkZXd0q6OdX2UKGgGaAloD0MIujKoNjgR6r+UhpRSlGgVSzJoFkdAsZF3F1jiGXV9lChoBmgJaA9DCDj1geSdA/C/lIaUUpRoFUsyaBZHQLGRWi8nNPh1fZQoaAZoCWgPQwhAFTduMT/vv5SGlFKUaBVLMmgWR0CxkTqoybhFdX2UKGgGaAloD0MICU/o9Sex8b+UhpRSlGgVSzJoFkdAsZKA4ku6E3V9lChoBmgJaA9DCAwiUtMuBgHAlIaUUpRoFUsyaBZHQLGSYbI91U51fZQoaAZoCWgPQwha8nhafuD0v5SGlFKUaBVLMmgWR0CxkkSVObiIdX2UKGgGaAloD0MIgNjSo6ne8b+UhpRSlGgVSzJoFkdAsZIlIvrWy3V9lChoBmgJaA9DCDCca5ih8ci/lIaUUpRoFUsyaBZHQLGTaPgeii91fZQoaAZoCWgPQwhtcvikEwnzv5SGlFKUaBVLMmgWR0Cxk0m1D0DmdX2UKGgGaAloD0MIqu/8ogT91L+UhpRSlGgVSzJoFkdAsZMslJHy3HV9lChoBmgJaA9DCHKo34WtWfG/lIaUUpRoFUsyaBZHQLGTDSRKYiR1fZQoaAZoCWgPQwjW/WMhOgT0v5SGlFKUaBVLMmgWR0CxlAJjYqXodX2UKGgGaAloD0MIswxxrItb7L+UhpRSlGgVSzJoFkdAsZPi0D2alXV9lChoBmgJaA9DCEz/klSmGOy/lIaUUpRoFUsyaBZHQLGTxUOd5IJ1fZQoaAZoCWgPQwgeUaG6ufjrv5SGlFKUaBVLMmgWR0Cxk6VRceKbdX2UKGgGaAloD0MITcCvkSQI0r+UhpRSlGgVSzJoFkdAsZSIfdRBNXV9lChoBmgJaA9DCFPKayV0l/S/lIaUUpRoFUsyaBZHQLGUaNRWLgp1fZQoaAZoCWgPQwiWlpF6T2X0v5SGlFKUaBVLMmgWR0CxlEs/pt78dX2UKGgGaAloD0MID2Q9tfpq4r+UhpRSlGgVSzJoFkdAsZQrTYukDnV9lChoBmgJaA9DCDI7i96pgOS/lIaUUpRoFUsyaBZHQLGVEFYdQwd1fZQoaAZoCWgPQwhYG2MnvITrv5SGlFKUaBVLMmgWR0CxlPCpFTegdX2UKGgGaAloD0MIH5+Qnbex+b+UhpRSlGgVSzJoFkdAsZTTEUCaJHV9lChoBmgJaA9DCCKKyRtgZue/lIaUUpRoFUsyaBZHQLGUsylN1yN1fZQoaAZoCWgPQwhh4STNH5P5v5SGlFKUaBVLMmgWR0CxlZL6tT1kdX2UKGgGaAloD0MIRBmqYir917+UhpRSlGgVSzJoFkdAsZVzTuv2XnV9lChoBmgJaA9DCBWOIJViJwHAlIaUUpRoFUsyaBZHQLGVVbKzRhN1fZQoaAZoCWgPQwhjf9k9eVj5v5SGlFKUaBVLMmgWR0CxlTXEuQIVdX2UKGgGaAloD0MIHVvPEI5Z2L+UhpRSlGgVSzJoFkdAsZYdS1mapnV9lChoBmgJaA9DCBsS91j6UOq/lIaUUpRoFUsyaBZHQLGV/a3I+4d1fZQoaAZoCWgPQwhUHAdeLXfuv5SGlFKUaBVLMmgWR0CxleAkcCHRdX2UKGgGaAloD0MIgNWRI50B7L+UhpRSlGgVSzJoFkdAsZXATBZZCHV9lChoBmgJaA9DCCtM32sIjvu/lIaUUpRoFUsyaBZHQLGWomQKa5R1fZQoaAZoCWgPQwjP9BJjmf71v5SGlFKUaBVLMmgWR0CxloKwhW5pdX2UKGgGaAloD0MINjy9UpYh7L+UhpRSlGgVSzJoFkdAsZZlGG21D3V9lChoBmgJaA9DCA2oN6PmK+u/lIaUUpRoFUsyaBZHQLGWRTewcHZ1fZQoaAZoCWgPQwiCxkyiXrDwv5SGlFKUaBVLMmgWR0CxlysyeqaPdX2UKGgGaAloD0MIRWKCGr6F7L+UhpRSlGgVSzJoFkdAsZcLkJa7mXV9lChoBmgJaA9DCARUOIJUitS/lIaUUpRoFUsyaBZHQLGW7gow22p1fZQoaAZoCWgPQwjt153uPPHvv5SGlFKUaBVLMmgWR0Cxls4nfEXMdX2UKGgGaAloD0MIWWsotRfR47+UhpRSlGgVSzJoFkdAsZe+KziS73V9lChoBmgJaA9DCGFtjJ3w0vW/lIaUUpRoFUsyaBZHQLGXnwN9YwJ1fZQoaAZoCWgPQwiLiGLyBpjnv5SGlFKUaBVLMmgWR0Cxl4GHk92YdX2UKGgGaAloD0MILv62J0is8b+UhpRSlGgVSzJoFkdAsZdhjqfOEHV9lChoBmgJaA9DCLtiRnh7EOq/lIaUUpRoFUsyaBZHQLGYP79AHFB1fZQoaAZoCWgPQwgBMnTsoNL6v5SGlFKUaBVLMmgWR0CxmCAS8J2MdX2UKGgGaAloD0MIppnudVLf77+UhpRSlGgVSzJoFkdAsZgCkJrtV3V9lChoBmgJaA9DCD/ggQGED+i/lIaUUpRoFUsyaBZHQLGX4qYqoZR1fZQoaAZoCWgPQwiR0QFJ2Dfrv5SGlFKUaBVLMmgWR0CxmLjN+so2dX2UKGgGaAloD0MIb4RFRZyO9b+UhpRSlGgVSzJoFkdAsZiZFkQPJHV9lChoBmgJaA9DCFuzlZf8z+u/lIaUUpRoFUsyaBZHQLGYe7fYSQJ1fZQoaAZoCWgPQwiWW1oNiTv5v5SGlFKUaBVLMmgWR0CxmFvn8sMBdX2UKGgGaAloD0MIpwNZT60+9b+UhpRSlGgVSzJoFkdAsZk3gsK9f3V9lChoBmgJaA9DCFggelImdfG/lIaUUpRoFUsyaBZHQLGZF9sJpnJ1fZQoaAZoCWgPQwj1DyIZcmzyv5SGlFKUaBVLMmgWR0CxmPomsvIwdX2UKGgGaAloD0MIUYiAQ6gS8b+UhpRSlGgVSzJoFkdAsZjaLhrFfnV9lChoBmgJaA9DCABw7Nlzmeu/lIaUUpRoFUsyaBZHQLGZq+/gzgx1fZQoaAZoCWgPQwj4NZIE4Yr0v5SGlFKUaBVLMmgWR0CxmYw08/2TdX2UKGgGaAloD0MIsAER4srZ9r+UhpRSlGgVSzJoFkdAsZlumHgxanV9lChoBmgJaA9DCINqgxPRr/2/lIaUUpRoFUsyaBZHQLGZTrMkhRt1fZQoaAZoCWgPQwgip6/naxb0v5SGlFKUaBVLMmgWR0Cxmil09yLidX2UKGgGaAloD0MIMLq8OVzr+L+UhpRSlGgVSzJoFkdAsZoJqveP73V9lChoBmgJaA9DCE91yM1wAwDAlIaUUpRoFUsyaBZHQLGZ6/sE7nx1fZQoaAZoCWgPQwhfe2ZJgJrtv5SGlFKUaBVLMmgWR0CxmcwPAfuDdX2UKGgGaAloD0MIeozyzMvh9L+UhpRSlGgVSzJoFkdAsZqiHHmzSnV9lChoBmgJaA9DCDGXVG03wQDAlIaUUpRoFUsyaBZHQLGagpobn5l1fZQoaAZoCWgPQwj8q8d9q3X1v5SGlFKUaBVLMmgWR0CxmmT2OAAidX2UKGgGaAloD0MIx2gdVU2Q8b+UhpRSlGgVSzJoFkdAsZpFIEr5I3V9lChoBmgJaA9DCBReglMfyPG/lIaUUpRoFUsyaBZHQLGbHvkRzzV1fZQoaAZoCWgPQwgPCd/7GzT4v5SGlFKUaBVLMmgWR0Cxmv8wQDmsdX2UKGgGaAloD0MIGapiKv1E9b+UhpRSlGgVSzJoFkdAsZrhkf9xZXV9lChoBmgJaA9DCNjviXWq/OW/lIaUUpRoFUsyaBZHQLGawZVn27F1fZQoaAZoCWgPQwhqhlRRvMrev5SGlFKUaBVLMmgWR0Cxm55LEk0KdX2UKGgGaAloD0MI3/yGiQap5b+UhpRSlGgVSzJoFkdAsZt+nMt9QXV9lChoBmgJaA9DCEEsmzkkNey/lIaUUpRoFUsyaBZHQLGbYROk+HJ1fZQoaAZoCWgPQwieYtUgzO3vv5SGlFKUaBVLMmgWR0Cxm0FfAsTWdX2UKGgGaAloD0MIaeId4EmL6b+UhpRSlGgVSzJoFkdAsZwwAS39aXV9lChoBmgJaA9DCD6uDRXjPP6/lIaUUpRoFUsyaBZHQLGcEMcp9Z11fZQoaAZoCWgPQwhMNbOWApL5v5SGlFKUaBVLMmgWR0Cxm/MguAZsdX2UKGgGaAloD0MIbTZWYp7V8b+UhpRSlGgVSzJoFkdAsZvTO6d1+3V9lChoBmgJaA9DCPcdw2M/i/O/lIaUUpRoFUsyaBZHQLGcuFo+Ofd1fZQoaAZoCWgPQwjxg/OpY5Xyv5SGlFKUaBVLMmgWR0CxnJjDO1OTdX2UKGgGaAloD0MI3h0Zq83/67+UhpRSlGgVSzJoFkdAsZx7HMlkY3V9lChoBmgJaA9DCC2Xjc75qeO/lIaUUpRoFUsyaBZHQLGcW0GNaQp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.0369911055313423, "std_reward": 0.38969749481340443, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T14:39:01.836405"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9a0aad25c2c1d515cc75a365c0ee7f6c7c3636a8979709792f32a1cfc6933bd
|
3 |
size 2381
|