Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,166 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
###
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
[
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
##
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
Here is the `README.md` file based on the dataset "Omartificial-Intelligence-Space/Arabic-NLi-Triplet" and the provided code and training details:
|
2 |
+
|
3 |
+
---
|
4 |
+
|
5 |
+
# Arabic NLI Triplet - Sentence Transformer Model
|
6 |
+
|
7 |
+
This repository contains a fine-tuned Sentence Transformer model trained on the "Omartificial-Intelligence-Space/Arabic-NLi-Triplet" dataset. The model is trained to generate 384-dimensional embeddings for semantic similarity tasks like paraphrase mining, sentence similarity, and clustering in Arabic.
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
|
11 |
+
- **Model Type:** Sentence Transformer
|
12 |
+
- **Base Model:** `intfloat/multilingual-e5-small`
|
13 |
+
- **Training Dataset:** [Omartificial-Intelligence-Space/Arabic-NLi-Triplet](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Triplet)
|
14 |
+
- **Similarity Function:** Cosine Similarity
|
15 |
+
- **Embedding Dimensionality:** 384 dimensions
|
16 |
+
- **Maximum Sequence Length:** 128 tokens
|
17 |
+
- **Performance Improvement:** The model achieved around 10% improvement when tested on the test set of the provided dataset, compared to the base model's performance.
|
18 |
+
|
19 |
+
## Dataset
|
20 |
+
|
21 |
+
### Arabic NLI Triplet Dataset
|
22 |
+
The dataset contains triplets of sentences in Arabic: an anchor sentence, a positive sentence (semantically similar to the anchor), and a negative sentence (semantically dissimilar to the anchor). The dataset is designed for learning sentence representations through triplet margin loss.
|
23 |
+
|
24 |
+
Dataset Link: [Omartificial-Intelligence-Space/Arabic-NLi-Triplet](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Triplet)
|
25 |
+
|
26 |
+
## Training Process
|
27 |
+
|
28 |
+
### Loss Function: Triplet Margin Loss
|
29 |
+
|
30 |
+
We used the Triplet Margin Loss with a margin of `1.0`. The model is trained to minimize the distance between anchor and positive embeddings, while maximizing the distance between anchor and negative embeddings.
|
31 |
+
|
32 |
+
### Training Loss Progress:
|
33 |
+
Below is the training loss recorded at various steps during the training process:
|
34 |
+
|
35 |
+
| Step | Training Loss |
|
36 |
+
|-------|---------------|
|
37 |
+
| 500 | 0.136500 |
|
38 |
+
| 1000 | 0.126500 |
|
39 |
+
| 1500 | 0.127300 |
|
40 |
+
| 2000 | 0.114500 |
|
41 |
+
| 2500 | 0.110600 |
|
42 |
+
| 3000 | 0.102300 |
|
43 |
+
| 3500 | 0.101300 |
|
44 |
+
| 4000 | 0.106900 |
|
45 |
+
| 4500 | 0.097200 |
|
46 |
+
| 5000 | 0.091700 |
|
47 |
+
| 5500 | 0.092400 |
|
48 |
+
| 6000 | 0.095500 |
|
49 |
+
|
50 |
+
## Model Training Code
|
51 |
+
|
52 |
+
The model was trained using the following code (without resuming from checkpoints):
|
53 |
+
|
54 |
+
```python
|
55 |
+
from datasets import load_dataset
|
56 |
+
from transformers import AutoTokenizer, AutoModel, TrainingArguments, Trainer
|
57 |
+
from torch.nn import TripletMarginLoss
|
58 |
+
|
59 |
+
# Load dataset
|
60 |
+
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic-NLi-Triplet")
|
61 |
+
|
62 |
+
# Load tokenizer
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("intfloat/multilingual-e5-small")
|
64 |
+
|
65 |
+
# Tokenize function
|
66 |
+
def tokenize_function(examples):
|
67 |
+
anchor_encodings = tokenizer(examples['anchor'], truncation=True, padding='max_length', max_length=128)
|
68 |
+
positive_encodings = tokenizer(examples['positive'], truncation=True, padding='max_length', max_length=128)
|
69 |
+
negative_encodings = tokenizer(examples['negative'], truncation=True, padding='max_length', max_length=128)
|
70 |
+
|
71 |
+
return {
|
72 |
+
'anchor_input_ids': anchor_encodings['input_ids'],
|
73 |
+
'anchor_attention_mask': anchor_encodings['attention_mask'],
|
74 |
+
'positive_input_ids': positive_encodings['input_ids'],
|
75 |
+
'positive_attention_mask': positive_encodings['attention_mask'],
|
76 |
+
'negative_input_ids': negative_encodings['input_ids'],
|
77 |
+
'negative_attention_mask': negative_encodings['attention_mask'],
|
78 |
+
}
|
79 |
+
|
80 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)
|
81 |
+
|
82 |
+
# Define triplet loss
|
83 |
+
triplet_loss = TripletMarginLoss(margin=1.0)
|
84 |
+
|
85 |
+
def compute_loss(anchor_embedding, positive_embedding, negative_embedding):
|
86 |
+
return triplet_loss(anchor_embedding, positive_embedding, negative_embedding)
|
87 |
+
|
88 |
+
# Load model
|
89 |
+
model = AutoModel.from_pretrained("intfloat/multilingual-e5-small")
|
90 |
+
|
91 |
+
class TripletTrainer(Trainer):
|
92 |
+
def compute_loss(self, model, inputs, return_outputs=False):
|
93 |
+
anchor_input_ids = inputs['anchor_input_ids'].to(self.args.device)
|
94 |
+
anchor_attention_mask = inputs['anchor_attention_mask'].to(self.args.device)
|
95 |
+
positive_input_ids = inputs['positive_input_ids'].to(self.args.device)
|
96 |
+
positive_attention_mask = inputs['positive_attention_mask'].to(self.args.device)
|
97 |
+
negative_input_ids = inputs['negative_input_ids'].to(self.args.device)
|
98 |
+
negative_attention_mask = inputs['negative_attention_mask'].to(self.args.device)
|
99 |
+
|
100 |
+
anchor_embeds = model(input_ids=anchor_input_ids, attention_mask=anchor_attention_mask).last_hidden_state.mean(dim=1)
|
101 |
+
positive_embeds = model(input_ids=positive_input_ids, attention_mask=positive_attention_mask).last_hidden_state.mean(dim=1)
|
102 |
+
negative_embeds = model(input_ids=negative_input_ids, attention_mask=negative_attention_mask).last_hidden_state.mean(dim=1)
|
103 |
+
|
104 |
+
return compute_loss(anchor_embeds, positive_embeds, negative_embeds)
|
105 |
+
|
106 |
+
# Training arguments
|
107 |
+
training_args = TrainingArguments(
|
108 |
+
output_dir="/content/drive/MyDrive/results",
|
109 |
+
learning_rate=2e-5,
|
110 |
+
per_device_train_batch_size=16,
|
111 |
+
num_train_epochs=3,
|
112 |
+
weight_decay=0.01,
|
113 |
+
logging_dir='/content/drive/MyDrive/logs',
|
114 |
+
remove_unused_columns=False,
|
115 |
+
fp16=True,
|
116 |
+
save_total_limit=3,
|
117 |
+
)
|
118 |
+
|
119 |
+
# Initialize trainer
|
120 |
+
trainer = TripletTrainer(
|
121 |
+
model=model,
|
122 |
+
args=training_args,
|
123 |
+
train_dataset=tokenized_datasets['train'],
|
124 |
+
)
|
125 |
+
|
126 |
+
# Start training
|
127 |
+
trainer.train()
|
128 |
+
|
129 |
+
# Save model and evaluate
|
130 |
+
trainer.save_model("/content/drive/MyDrive/fine-tuned-multilingual-e5")
|
131 |
+
results = trainer.evaluate()
|
132 |
+
print(results)
|
133 |
+
```
|
134 |
+
|
135 |
+
## Framework Versions
|
136 |
+
|
137 |
+
- Python: 3.10.11
|
138 |
+
- Sentence Transformers: 3.0.1
|
139 |
+
- Transformers: 4.44.2
|
140 |
+
- PyTorch: 2.4.0
|
141 |
+
- Datasets: 2.21.0
|
142 |
+
|
143 |
+
## How to Use
|
144 |
+
|
145 |
+
To use the model, install the required libraries and load the model with the following code:
|
146 |
+
|
147 |
+
```bash
|
148 |
+
pip install -U sentence-transformers
|
149 |
+
```
|
150 |
+
|
151 |
+
```python
|
152 |
+
from sentence_transformers import SentenceTransformer
|
153 |
+
|
154 |
+
# Load the fine-tuned model
|
155 |
+
model = SentenceTransformer("gimmeursocks/ara-e5-small")
|
156 |
+
|
157 |
+
# Run inference
|
158 |
+
sentences = ['أنا سعيد', 'الجو جميل اليوم', 'هذا كلب كبير']
|
159 |
+
embeddings = model.encode(sentences)
|
160 |
+
print(embeddings.shape)
|
161 |
+
```
|
162 |
+
|
163 |
+
## Citation
|
164 |
+
|
165 |
+
If you use this model or dataset, please cite the corresponding paper or dataset source.
|
166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|