giraffe176 commited on
Commit
d84cc91
1 Parent(s): 9ed288f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -43
README.md CHANGED
@@ -1,74 +1,79 @@
1
  ---
2
  base_model:
 
3
  - berkeley-nest/Starling-LM-7B-alpha
4
  - mlabonne/AlphaMonarch-7B
5
  - cognitivecomputations/WestLake-7B-v2-laser
6
  - senseable/garten2-7b
7
- - mistralai/Mistral-7B-v0.1
8
  library_name: transformers
9
  tags:
10
  - mergekit
11
  - merge
12
-
13
  ---
14
- # temp1
15
 
16
- This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
17
 
18
- ## Merge Details
19
- ### Merge Method
20
-
21
- This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base.
22
-
23
- ### Models Merged
24
 
25
- The following models were included in the merge:
26
- * [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
27
- * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
28
- * [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser)
29
- * [senseable/garten2-7b](https://huggingface.co/senseable/garten2-7b)
30
 
31
- ### Configuration
32
 
33
- The following YAML configuration was used to produce this model:
34
 
35
- ```yaml
36
- models:
37
- - model: mistralai/Mistral-7B-v0.1
38
- # No parameters necessary for base model
39
 
40
- - model: cognitivecomputations/WestLake-7B-v2-laser
41
- parameters:
42
- density: 0.58
43
- weight: [0.3877, 0.1636, 0.186, 0.0502]
44
 
45
 
 
 
 
46
 
47
- - model: senseable/garten2-7b
48
- parameters:
49
- density: 0.58
50
- weight: [0.234, 0.2423, 0.2148, 0.2775]
51
 
 
52
 
 
53
 
54
- - model: berkeley-nest/Starling-LM-7B-alpha
55
- parameters:
56
- density: 0.58
57
- weight: [0.1593, 0.1573, 0.1693, 0.3413]
58
 
 
 
 
 
 
 
 
59
 
60
 
61
- - model: mlabonne/AlphaMonarch-7B
62
- parameters:
63
- density: 0.58
64
- weight: [0.219, 0.4368, 0.4299, 0.331]
65
 
 
66
 
 
 
 
 
 
67
 
68
- merge_method: dare_ties
69
- base_model: mistralai/Mistral-7B-v0.1
70
- parameters:
71
- int8_mask: true
72
- dtype: bfloat16
73
 
74
- ```
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  base_model:
3
+ - mistralai/Mistral-7B-v0.1
4
  - berkeley-nest/Starling-LM-7B-alpha
5
  - mlabonne/AlphaMonarch-7B
6
  - cognitivecomputations/WestLake-7B-v2-laser
7
  - senseable/garten2-7b
8
+
9
  library_name: transformers
10
  tags:
11
  - mergekit
12
  - merge
13
+ license: cc-by-nc-4.0
14
  ---
15
+ # Starling_Monarch_Westlake_Garten-7B-v0.1
16
 
17
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/655a9883cbbaec115c3fd6b3/Chyn1eXYC0LSY6yVdeRBV.png" alt="drawing" width="800"/>
18
 
19
+ After experimenting with density for a previous merge (containing similar models), I decided to experiment with weight gradients. My thought that was that if the merge was done with care and attention, I'd be able to create something greater than the sum of its parts.
20
+ Hoping that, through a merge of really good models, I'd be able to create soemthing greater than the sum of its parts.
 
 
 
 
21
 
22
+ I came across the EQ-Bench Benchmark [(Paper)](https://arxiv.org/abs/2312.06281) as part of my earlier testing. It is a very light and quick benchmark that yields powerful insights into how well the model performs in emotional intelligence related prompts.
23
+ As part of this process, I tried to figure out if there was a way to determine an optimal set of gradient weights that would lead to the most successful merge as measured against EQ-Bench. At first, my goal was to simply exceed WestLake-7B, but then I kept pushing to see what I could come up with.
24
+ Too late in the process, I learned that [dare_ties](https://arxiv.org/abs/2311.03099) has a random element to it. Valuable information for next time, I guess. After concluding that project, I began collecting more data, this time setting a specified seed in mergekit for reproducibility. As I was collecting data, I hit the goal I had set for myself.
25
+ This model is *not* a result of the above work but is the genesis of how this model came to be.
 
26
 
27
+ I present, **Starling_Monarch_Westlake_Garten-7B-v0.1**, the only 7B model to score > 80 on the EQ-Bench v2.1 benchmark found [here](https://github.com/EQ-bench/EQ-Bench), outscoring larger models like [abacusai/Smaug-72B-v0.1](https://huggingface.co/abacusai/Smaug-72B-v0.1) and [cognitivecomputations/dolphin-2.2-70b](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b)
28
 
29
+ It also earned 8.109 on MT-Bench[(paper)](https://arxiv.org/abs/2306.05685), outscoring Chat-GPT 3.5 and Claude v1.
30
 
31
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
 
 
 
32
 
33
+ ## Merge Details
34
+ ### Merge Method
 
 
35
 
36
 
37
+ This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base.
38
+ The seed for this merge is 176
39
+ ### Models Merged
40
 
41
+ The following models were included in the merge:
42
+ dtype: bfloat16
 
 
43
 
44
+ ```
45
 
46
+ ### Table of Benchmarks
47
 
48
+ ## Open LLM Leaderboard
 
 
 
49
 
50
+ | | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
51
+ |---------------------------------------------------------|---------|-------|-----------|-------|------------|------------|-------|
52
+ | giraffe176/Starling_Monarch_Westlake_Garten-7B-v0.1 | 74.9 | 71.76 | 88.15 | 65.07 | 67.92 | 84.53 | 71.95 |
53
+ | mlabonne/AlphaMonarch-7B | 75.99 | 73.04 | 89.18 | 64.4 | 77.91 | 84.69 | 66.72 |
54
+ | senseable/WestLake-7B-v2 | 74.68 | 73.04 | 88.65 | 64.71 | 67.06 | 86.98 | 67.63 |
55
+ | berkeley-nest/Starling-LM-7B-alpha | 67.13 | 63.82 | 84.9 | 63.64 | 46.39 | 80.58 | 62.4 |
56
+ | senseable/garten2-7b | 72.65 | 69.37 | 87.54 | 65.44 | 59.5 | 84.69 | 69.37 |
57
 
58
 
 
 
 
 
59
 
60
+ ## Yet Another LLM Leaderboard benchmarks
61
 
62
+ | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
63
+ |---------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
64
+ |[giraffe176/Starling_Monarch_Westlake_Garten-7B-v0.1](https://huggingface.co/giraffe176/Starling_Monarch_Westlake_Garten-7B-v0.1)| 44.99| 76.93| 68.04| 47.71| 59.42|
65
+ |[mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) | 45.37| 77 | 78.39| 50.2 | 62.74|
66
+ |[berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) | 42.06| 72.72| 47.33| 42.53| 51.16 |
67
 
68
+ ## Misc. Benchmarks
 
 
 
 
69
 
70
+ | | MT-Bench | EQ-Bench v2.1 |
71
+ |---------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|
72
+ | giraffe176/Starling_Monarch_Westlake_Garten-7B-v0.1 | 8.109375 | 80.01 (3 Shot, ChatML, ooba) |
73
+ | mlabonne/AlphaMonarch-7B | 8.23750 | 76.08 |
74
+ | senseable/WestLake-7B-v2 | X | 78.7 |
75
+ | berkeley-nest/Starling-LM-7B-alpha | 8.09 | 68.69 (1 Shot, ChatML, ooba) |
76
+ | senseable/garten2-7b | X | 75.03 |
77
+ | claude-v1 | 7.900000 | 76.83 |
78
+ | gpt-3.5-turbo | 7.943750 | 71.74 |
79
+ | | [(Paper)](https://arxiv.org/abs/2306.05685) | [(Paper)](https://arxiv.org/abs/2312.06281) [Leaderboard](https://eqbench.com/) |