--- base_model: - berkeley-nest/Starling-LM-7B-alpha - mlabonne/AlphaMonarch-7B - cognitivecomputations/WestLake-7B-v2-laser - senseable/garten2-7b - mistralai/Mistral-7B-v0.1 library_name: transformers tags: - mergekit - merge --- # temp1 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) * [senseable/garten2-7b](https://huggingface.co/senseable/garten2-7b) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: cognitivecomputations/WestLake-7B-v2-laser parameters: density: 0.58 weight: [0.3877, 0.1636, 0.186, 0.0502] - model: senseable/garten2-7b parameters: density: 0.58 weight: [0.234, 0.2423, 0.2148, 0.2775] - model: berkeley-nest/Starling-LM-7B-alpha parameters: density: 0.58 weight: [0.1593, 0.1573, 0.1693, 0.3413] - model: mlabonne/AlphaMonarch-7B parameters: density: 0.58 weight: [0.219, 0.4368, 0.4299, 0.331] merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ```